/* fortran/zungl2.f -- translated by f2c (version 20200916). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #ifdef __cplusplus extern "C" { #endif #include "lmp_f2c.h" /* > \brief \b ZUNGL2 generates all or part of the unitary matrix Q from an LQ factorization determined by cge lqf (unblocked algorithm). */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download ZUNGL2 + dependencies */ /* > */ /* > [TGZ] */ /* > */ /* > [ZIP] */ /* > */ /* > [TXT] */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE ZUNGL2( M, N, K, A, LDA, TAU, WORK, INFO ) */ /* .. Scalar Arguments .. */ /* INTEGER INFO, K, LDA, M, N */ /* .. */ /* .. Array Arguments .. */ /* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) */ /* .. */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > ZUNGL2 generates an m-by-n complex matrix Q with orthonormal rows, */ /* > which is defined as the first m rows of a product of k elementary */ /* > reflectors of order n */ /* > */ /* > Q = H(k)**H . . . H(2)**H H(1)**H */ /* > */ /* > as returned by ZGELQF. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix Q. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix Q. N >= M. */ /* > \endverbatim */ /* > */ /* > \param[in] K */ /* > \verbatim */ /* > K is INTEGER */ /* > The number of elementary reflectors whose product defines the */ /* > matrix Q. M >= K >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX*16 array, dimension (LDA,N) */ /* > On entry, the i-th row must contain the vector which defines */ /* > the elementary reflector H(i), for i = 1,2,...,k, as returned */ /* > by ZGELQF in the first k rows of its array argument A. */ /* > On exit, the m by n matrix Q. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The first dimension of the array A. LDA >= max(1,M). */ /* > \endverbatim */ /* > */ /* > \param[in] TAU */ /* > \verbatim */ /* > TAU is COMPLEX*16 array, dimension (K) */ /* > TAU(i) must contain the scalar factor of the elementary */ /* > reflector H(i), as returned by ZGELQF. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX*16 array, dimension (M) */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument has an illegal value */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \ingroup complex16OTHERcomputational */ /* ===================================================================== */ /* Subroutine */ int zungl2_(integer *m, integer *n, integer *k, doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex * work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublecomplex z__1, z__2; /* Builtin functions */ void d_lmp_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, l; extern /* Subroutine */ int zscal_(integer *, doublecomplex *, doublecomplex *, integer *), zlarf_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, ftnlen), xerbla_(char *, integer *, ftnlen), zlacgv_(integer *, doublecomplex *, integer *); /* -- LAPACK computational routine -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < *m) { *info = -2; } else if (*k < 0 || *k > *m) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_((char *)"ZUNGL2", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*m <= 0) { return 0; } if (*k < *m) { /* Initialise rows k+1:m to rows of the unit matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (l = *k + 1; l <= i__2; ++l) { i__3 = l + j * a_dim1; a[i__3].r = 0., a[i__3].i = 0.; /* L10: */ } if (j > *k && j <= *m) { i__2 = j + j * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; } /* L20: */ } } for (i__ = *k; i__ >= 1; --i__) { /* Apply H(i)**H to A(i:m,i:n) from the right */ if (i__ < *n) { i__1 = *n - i__; zlacgv_(&i__1, &a[i__ + (i__ + 1) * a_dim1], lda); if (i__ < *m) { i__1 = i__ + i__ * a_dim1; a[i__1].r = 1., a[i__1].i = 0.; i__1 = *m - i__; i__2 = *n - i__ + 1; d_lmp_cnjg(&z__1, &tau[i__]); zlarf_((char *)"Right", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, & z__1, &a[i__ + 1 + i__ * a_dim1], lda, &work[1], ( ftnlen)5); } i__1 = *n - i__; i__2 = i__; z__1.r = -tau[i__2].r, z__1.i = -tau[i__2].i; zscal_(&i__1, &z__1, &a[i__ + (i__ + 1) * a_dim1], lda); i__1 = *n - i__; zlacgv_(&i__1, &a[i__ + (i__ + 1) * a_dim1], lda); } i__1 = i__ + i__ * a_dim1; d_lmp_cnjg(&z__2, &tau[i__]); z__1.r = 1. - z__2.r, z__1.i = 0. - z__2.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; /* Set A(i,1:i-1) to zero */ i__1 = i__ - 1; for (l = 1; l <= i__1; ++l) { i__2 = i__ + l * a_dim1; a[i__2].r = 0., a[i__2].i = 0.; /* L30: */ } /* L40: */ } return 0; /* End of ZUNGL2 */ } /* zungl2_ */ #ifdef __cplusplus } #endif