// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: James Larentzos (U.S. Army Research Laboratory) ------------------------------------------------------------------------- */ #include "pair_dpd_fdt.h" #include "atom.h" #include "comm.h" #include "error.h" #include "fix.h" #include "force.h" #include "memory.h" #include "modify.h" #include "neigh_list.h" #include "neighbor.h" #include "random_mars.h" #include "update.h" #include using namespace LAMMPS_NS; #define EPSILON 1.0e-10 /* ---------------------------------------------------------------------- */ PairDPDfdt::PairDPDfdt(LAMMPS *lmp) : Pair(lmp) { random = nullptr; splitFDT_flag = false; a0_is_zero = false; } /* ---------------------------------------------------------------------- */ PairDPDfdt::~PairDPDfdt() { if (allocated) { memory->destroy(setflag); memory->destroy(cutsq); memory->destroy(cut); memory->destroy(a0); memory->destroy(sigma); } if (random) delete random; } /* ---------------------------------------------------------------------- */ void PairDPDfdt::compute(int eflag, int vflag) { int i,j,ii,jj,inum,jnum,itype,jtype; double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair; double vxtmp,vytmp,vztmp,delvx,delvy,delvz; double rsq,r,rinv,dot,wd,wr,randnum,factor_dpd; int *ilist,*jlist,*numneigh,**firstneigh; double gamma_ij; evdwl = 0.0; ev_init(eflag,vflag); double **x = atom->x; double **v = atom->v; double **f = atom->f; int *type = atom->type; int nlocal = atom->nlocal; double *special_lj = force->special_lj; int newton_pair = force->newton_pair; double dtinvsqrt = 1.0/sqrt(update->dt); inum = list->inum; ilist = list->ilist; numneigh = list->numneigh; firstneigh = list->firstneigh; // loop over neighbors of my atoms if (splitFDT_flag) { if (!a0_is_zero) for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_dpd = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; if (rsq < cutsq[itype][jtype]) { r = sqrt(rsq); if (r < EPSILON) continue; // r can be 0.0 in DPD systems rinv = 1.0/r; wr = 1.0 - r/cut[itype][jtype]; wd = wr*wr; // conservative force = a0 * wr fpair = a0[itype][jtype]*wr; fpair *= factor_dpd*rinv; f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (newton_pair || j < nlocal) { f[j][0] -= delx*fpair; f[j][1] -= dely*fpair; f[j][2] -= delz*fpair; } if (eflag) { // unshifted eng of conservative term: // evdwl = -a0[itype][jtype]*r * (1.0-0.5*r/cut[itype][jtype]); // eng shifted to 0.0 at cutoff evdwl = 0.5*a0[itype][jtype]*cut[itype][jtype] * wd; evdwl *= factor_dpd; } if (evflag) ev_tally(i,j,nlocal,newton_pair, evdwl,0.0,fpair,delx,dely,delz); } } } } else { for (ii = 0; ii < inum; ii++) { i = ilist[ii]; xtmp = x[i][0]; ytmp = x[i][1]; ztmp = x[i][2]; vxtmp = v[i][0]; vytmp = v[i][1]; vztmp = v[i][2]; itype = type[i]; jlist = firstneigh[i]; jnum = numneigh[i]; for (jj = 0; jj < jnum; jj++) { j = jlist[jj]; factor_dpd = special_lj[sbmask(j)]; j &= NEIGHMASK; delx = xtmp - x[j][0]; dely = ytmp - x[j][1]; delz = ztmp - x[j][2]; rsq = delx*delx + dely*dely + delz*delz; jtype = type[j]; if (rsq < cutsq[itype][jtype]) { r = sqrt(rsq); if (r < EPSILON) continue; // r can be 0.0 in DPD systems rinv = 1.0/r; delvx = vxtmp - v[j][0]; delvy = vytmp - v[j][1]; delvz = vztmp - v[j][2]; dot = delx*delvx + dely*delvy + delz*delvz; wr = 1.0 - r/cut[itype][jtype]; wd = wr*wr; randnum = random->gaussian(); gamma_ij = sigma[itype][jtype]*sigma[itype][jtype] / (2.0*force->boltz*temperature); // conservative force = a0 * wd // drag force = -gamma * wd^2 * (delx dot delv) / r // random force = sigma * wd * rnd * dtinvsqrt; fpair = a0[itype][jtype]*wr; fpair -= gamma_ij*wd*dot*rinv; fpair += sigma[itype][jtype]*wr*randnum*dtinvsqrt; fpair *= factor_dpd*rinv; f[i][0] += delx*fpair; f[i][1] += dely*fpair; f[i][2] += delz*fpair; if (newton_pair || j < nlocal) { f[j][0] -= delx*fpair; f[j][1] -= dely*fpair; f[j][2] -= delz*fpair; } if (eflag) { // unshifted eng of conservative term: // evdwl = -a0[itype][jtype]*r * (1.0-0.5*r/cut[itype][jtype]); // eng shifted to 0.0 at cutoff evdwl = 0.5*a0[itype][jtype]*cut[itype][jtype] * wd; evdwl *= factor_dpd; } if (evflag) ev_tally(i,j,nlocal,newton_pair, evdwl,0.0,fpair,delx,dely,delz); } } } } if (vflag_fdotr) virial_fdotr_compute(); } /* ---------------------------------------------------------------------- allocate all arrays ------------------------------------------------------------------------- */ void PairDPDfdt::allocate() { allocated = 1; int n = atom->ntypes; memory->create(setflag,n+1,n+1,"pair:setflag"); for (int i = 1; i <= n; i++) for (int j = i; j <= n; j++) setflag[i][j] = 0; memory->create(cutsq,n+1,n+1,"pair:cutsq"); memory->create(cut,n+1,n+1,"pair:cut"); memory->create(a0,n+1,n+1,"pair:a0"); memory->create(sigma,n+1,n+1,"pair:sigma"); } /* ---------------------------------------------------------------------- global settings ------------------------------------------------------------------------- */ void PairDPDfdt::settings(int narg, char **arg) { // process keywords if (narg != 3) error->all(FLERR,"Illegal pair_style command"); temperature = utils::numeric(FLERR,arg[0],false,lmp); cut_global = utils::numeric(FLERR,arg[1],false,lmp); seed = utils::inumeric(FLERR,arg[2],false,lmp); // initialize Marsaglia RNG with processor-unique seed if (seed <= 0) error->all(FLERR,"Illegal pair_style command"); delete random; random = new RanMars(lmp,seed + comm->me); // reset cutoffs that have been explicitly set if (allocated) { int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) if (setflag[i][j]) cut[i][j] = cut_global; } } /* ---------------------------------------------------------------------- set coeffs for one or more type pairs ------------------------------------------------------------------------- */ void PairDPDfdt::coeff(int narg, char **arg) { if (narg < 4 || narg > 5) error->all(FLERR,"Incorrect args for pair coefficients"); if (!allocated) allocate(); int ilo,ihi,jlo,jhi; utils::bounds(FLERR,arg[0],1,atom->ntypes,ilo,ihi,error); utils::bounds(FLERR,arg[1],1,atom->ntypes,jlo,jhi,error); double a0_one = utils::numeric(FLERR,arg[2],false,lmp); double sigma_one = utils::numeric(FLERR,arg[3],false,lmp); double cut_one = cut_global; a0_is_zero = (a0_one == 0.0); // Typical use with SSA is to set a0 to zero if (narg == 5) cut_one = utils::numeric(FLERR,arg[4],false,lmp); int count = 0; for (int i = ilo; i <= ihi; i++) { for (int j = MAX(jlo,i); j <= jhi; j++) { a0[i][j] = a0_one; sigma[i][j] = sigma_one; cut[i][j] = cut_one; setflag[i][j] = 1; count++; } } if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients"); } /* ---------------------------------------------------------------------- init specific to this pair style ------------------------------------------------------------------------- */ void PairDPDfdt::init_style() { if (comm->ghost_velocity == 0) error->all(FLERR,"Pair dpd/fdt requires ghost atoms store velocity"); splitFDT_flag = false; neighbor->add_request(this); for (int i = 0; i < modify->nfix; i++) if (utils::strmatch(modify->fix[i]->style,"^shardlow")) { splitFDT_flag = true; } // if newton off, forces between atoms ij will be double computed // using different random numbers if splitFDT_flag is false if (!splitFDT_flag && (force->newton_pair == 0) && (comm->me == 0)) error->warning(FLERR, "Pair dpd/fdt requires newton pair on if not also using fix shardlow"); } /* ---------------------------------------------------------------------- init for one type pair i,j and corresponding j,i ------------------------------------------------------------------------- */ double PairDPDfdt::init_one(int i, int j) { if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set"); cut[j][i] = cut[i][j]; a0[j][i] = a0[i][j]; sigma[j][i] = sigma[i][j]; return cut[i][j]; } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairDPDfdt::write_restart(FILE *fp) { write_restart_settings(fp); int i,j; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { fwrite(&setflag[i][j],sizeof(int),1,fp); if (setflag[i][j]) { fwrite(&a0[i][j],sizeof(double),1,fp); fwrite(&sigma[i][j],sizeof(double),1,fp); fwrite(&cut[i][j],sizeof(double),1,fp); } } } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairDPDfdt::read_restart(FILE *fp) { read_restart_settings(fp); allocate(); a0_is_zero = true; // start with assumption that a0 is zero int i,j; int me = comm->me; for (i = 1; i <= atom->ntypes; i++) for (j = i; j <= atom->ntypes; j++) { if (me == 0) utils::sfread(FLERR,&setflag[i][j],sizeof(int),1,fp,nullptr,error); MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world); if (setflag[i][j]) { if (me == 0) { utils::sfread(FLERR,&a0[i][j],sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&sigma[i][j],sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&cut[i][j],sizeof(double),1,fp,nullptr,error); } MPI_Bcast(&a0[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&sigma[i][j],1,MPI_DOUBLE,0,world); MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world); a0_is_zero = a0_is_zero && (a0[i][j] == 0.0); // verify the zero assumption } } } /* ---------------------------------------------------------------------- proc 0 writes to restart file ------------------------------------------------------------------------- */ void PairDPDfdt::write_restart_settings(FILE *fp) { fwrite(&temperature,sizeof(double),1,fp); fwrite(&cut_global,sizeof(double),1,fp); fwrite(&seed,sizeof(int),1,fp); fwrite(&mix_flag,sizeof(int),1,fp); } /* ---------------------------------------------------------------------- proc 0 reads from restart file, bcasts ------------------------------------------------------------------------- */ void PairDPDfdt::read_restart_settings(FILE *fp) { if (comm->me == 0) { utils::sfread(FLERR,&temperature,sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&cut_global,sizeof(double),1,fp,nullptr,error); utils::sfread(FLERR,&seed,sizeof(int),1,fp,nullptr,error); utils::sfread(FLERR,&mix_flag,sizeof(int),1,fp,nullptr,error); } MPI_Bcast(&temperature,1,MPI_DOUBLE,0,world); MPI_Bcast(&cut_global,1,MPI_DOUBLE,0,world); MPI_Bcast(&seed,1,MPI_INT,0,world); MPI_Bcast(&mix_flag,1,MPI_INT,0,world); // initialize Marsaglia RNG with processor-unique seed // same seed that pair_style command initially specified if (random) delete random; random = new RanMars(lmp,seed + comm->me); } /* ---------------------------------------------------------------------- */ double PairDPDfdt::single(int /*i*/, int /*j*/, int itype, int jtype, double rsq, double /*factor_coul*/, double factor_dpd, double &fforce) { double r,rinv,wr,wd,phi; r = sqrt(rsq); if (r < EPSILON) { fforce = 0.0; return 0.0; } rinv = 1.0/r; wr = 1.0 - r/cut[itype][jtype]; wd = wr*wr; fforce = a0[itype][jtype]*wr * factor_dpd*rinv; phi = 0.5*a0[itype][jtype]*cut[itype][jtype] * wd; return factor_dpd*phi; }