/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing authors: Mike Brown (SNL), wmbrown@sandia.gov Peng Wang (Nvidia), penwang@nvidia.com Paul Crozier (SNL), pscrozi@sandia.gov ------------------------------------------------------------------------- */ #include #include #include #include "cudatimer.h" #include "lj_tex.h" #include "neigh.h" #include "cell.h" #include "lj_gpu_kernel.h" #ifdef WINDLL #define EXTERN extern "C" __declspec(dllexport) #else #define EXTERN #endif static float h_boxlo[3], h_boxhi[3]; static float cell_size; static float *energy = NULL, *d_energy = NULL; static float3 *d_force = NULL, *f_temp = NULL, *v_temp = NULL, *d_virial = NULL; static float4 *d_pos = NULL, *temp_pos = NULL; static int *d_type = NULL; static int ncellx, ncelly, ncellz; static neigh_list_gpu d_neigh_list; static cell_list_gpu d_cell_list; #define TIMING(x) // --------------------------------------------------------------------------- // Return string with GPU info // --------------------------------------------------------------------------- EXTERN void lj_gpu_name(const int id, const int max_nbors, char * name) { struct cudaDeviceProp prop; CUDA_SAFE_CALL( cudaGetDeviceProperties(&prop, id) ); #ifdef _WIN32 strcpy_s(name, strlen(prop.name)+1, prop.name); #else strncpy(name, prop.name, strlen(prop.name)+1); #endif } // --------------------------------------------------------------------------- // Allocate memory on host and device and copy constants to device // --------------------------------------------------------------------------- EXTERN bool lj_gpu_init(int &ij_size, const int ntypes, double **cutsq,double **sigma, double **epsilon, double **host_lj1, double **host_lj2, double **host_lj3, double **host_lj4, double **offset, double *special_lj, double *boxlo, double *boxhi, double cellsize, double skin, const int max_nbors, const int gpu_id) { int num_devices; /* get device count */ CUDA_SAFE_CALL( cudaGetDeviceCount(&num_devices) ); if (num_devices == 0) { printf("NO CUDA-capable GPU detected.\n"); exit(1); } if (gpu_id > num_devices) { printf("gpu_id %d is larger than the number of GPUs %d\n", gpu_id, num_devices); exit(1); } /* set CUDA device to the specified GPU */ cudaThreadExit(); CUDA_SAFE_CALL( cudaSetDevice(gpu_id) ); ij_size=0; cell_size = cellsize; ncellx = ceil(((boxhi[0] - boxlo[0]) + 2.0*cell_size) / cell_size); ncelly = ceil(((boxhi[1] - boxlo[1]) + 2.0*cell_size) / cell_size); ncellz = ceil(((boxhi[2] - boxlo[2]) + 2.0*cell_size) / cell_size); for (int i = 0; i < 3; i++) { h_boxhi[i] = boxhi[i]; h_boxlo[i] = boxlo[i]; } init_force_const(ntypes, cutsq, host_lj1, host_lj2, host_lj3, host_lj4, offset); init_cell_list_const(cellsize, skin, boxlo, boxhi); return true; } // --------------------------------------------------------------------------- // Clear memory on host and device // --------------------------------------------------------------------------- EXTERN void lj_gpu_clear() { free(energy); free(v_temp); CUDA_SAFE_CALL( cudaFreeHost(f_temp) ); if (d_force) CUDA_SAFE_CALL( cudaFree(d_force) ); if (d_energy) CUDA_SAFE_CALL( cudaFree(d_energy) ); if (d_virial) CUDA_SAFE_CALL( cudaFree(d_virial) ); if (d_pos) CUDA_SAFE_CALL( cudaFree(d_pos) ); if (d_type) CUDA_SAFE_CALL( cudaFree(d_type) ); if (temp_pos) CUDA_SAFE_CALL( cudaFreeHost(temp_pos) ); clear_neigh_list_gpu(d_neigh_list); clear_cell_list_gpu(d_cell_list); if (useCache) { unbind_pos(); unbind_type(); } //LJMF.clear(); } template double _lj_gpu_neigh(double **force, double *virial, double **host_x, int *host_type, const int inum, const int nall, const int ago, const bool eflag, const bool vflag, const double *boxlo, const double *boxhi) { double evdwl=0.0; static int first_call = 1; TIMING( static CUDATimer cuTimer ); TIMING( static CTimer cTimer ); TIMING( static CTimer cTimer2 ); double *atom_pos = host_x[0]; static int szTailList = inum*32; TIMING( cTimer.Start() ); TIMING( cTimer2.Start() ); /* MPI communication just happened, reallocate space using new inum & nall FIXME: this is costly: ~ total kernel time! Use a DIY GPU memory allocator.*/ if (first_call || ago == 0) { if (!first_call) { if (useCache) { unbind_pos(); unbind_type(); } CUDA_SAFE_CALL( cudaFree(d_force) ); CUDA_SAFE_CALL( cudaFree(d_energy) ); CUDA_SAFE_CALL( cudaFree(d_virial) ); CUDA_SAFE_CALL( cudaFree(d_pos) ); CUDA_SAFE_CALL( cudaFree(d_type) ); clear_neigh_list_gpu(d_neigh_list); CUDA_SAFE_CALL( cudaFreeHost(f_temp) ); CUDA_SAFE_CALL( cudaFreeHost(temp_pos) ); free(energy); free(v_temp); } CUDA_SAFE_CALL( cudaMalloc((void**)&d_force, inum*sizeof(float3)) ); CUDA_SAFE_CALL( cudaMalloc((void**)&d_energy, inum*sizeof(float)) ); CUDA_SAFE_CALL( cudaMalloc((void**)&d_virial, inum*3*sizeof(float3)) ); CUDA_SAFE_CALL( cudaMalloc((void**)&d_pos, nall*sizeof(float4)) ); CUDA_SAFE_CALL( cudaMalloc((void**)&d_type, nall*sizeof(int)) ); init_neigh_list_gpu(d_neigh_list, inum, NEIGH_BIN_SIZE, szTailList); CUDA_SAFE_CALL( cudaMallocHost((void**)&temp_pos, nall*sizeof(float4)) ); CUDA_SAFE_CALL( cudaMallocHost((void**)&f_temp, inum*sizeof(float3)) ); energy = (float*) malloc(inum*sizeof(float)); v_temp = (float3*)malloc(inum*2*sizeof(float3)); if (useCache) { bind_pos(d_pos, nall); bind_type(d_type, nall); } first_call = 0; CUDA_SAFE_CALL( cudaThreadSynchronize() ); CUDA_SAFE_CALL( cudaGetLastError() ); CUDA_SAFE_CALL( cudaMemcpy(d_type, host_type, nall*sizeof(int), cudaMemcpyHostToDevice) ); } TIMING( static double mallocTime = 0. ); TIMING( mallocTime += cTimer2.GetET() ); TIMING( printf("malloc time = %f ms\n", mallocTime*1e3) ); TIMING( cTimer2.Start() ); for (int i = 0; i < 3*nall; i+=3) { temp_pos[i/3] = make_float4(atom_pos[i], atom_pos[i+1], atom_pos[i+2], 0.f); } TIMING( static double copyTime = 0. ); TIMING( copyTime += cTimer2.GetET() ); TIMING( printf("position copy time = %f ms\n", copyTime*1e3) ); TIMING( cTimer2.Start() ); CUDA_SAFE_CALL( cudaMemcpy(d_pos, temp_pos, nall*sizeof(float4), cudaMemcpyHostToDevice) ); TIMING( static double h2dTime = 0. ); TIMING( h2dTime += cTimer2.GetET() ); TIMING( printf("h2d copy time = %f ms\n", h2dTime*1e3) ); TIMING( cTimer2.Start() ); if (ago == 0) { build_neigh_list_gpu(d_pos, d_neigh_list, h_boxlo, h_boxhi, cell_size, inum, nall); } TIMING( static double neighTime = 0. ); TIMING( neighTime += cTimer2.GetET() ); TIMING( printf("Neigh List time = %f ms\n", neighTime*1e3) ); TIMING( cTimer2.Start() ); calc_lj_neigh_gpu(d_force, d_energy, d_virial, d_pos, d_type, d_neigh_list, inum, nall, eflag, vflag); TIMING( static double forceTime = 0. ); TIMING( forceTime += cTimer2.GetET() ); TIMING( printf("Force time = %f ms\n", forceTime*1e3) ); TIMING( printf("GPU kernel time = %f ms\n", (forceTime + neighTime)*1e3) ); TIMING( cTimer2.Start() ); CUDA_SAFE_CALL( cudaMemcpy(f_temp, d_force, inum*sizeof(float3), cudaMemcpyDeviceToHost) ); TIMING( static double d2hTime = 0. ); TIMING( d2hTime += cTimer2.GetET() ); TIMING( printf("d2h copy time = %f ms\n", d2hTime*1e3) ); TIMING( printf("GPU-CPU data transfer time = %f ms\n", (h2dTime+d2hTime)*1e3) ); TIMING( cTimer2.Start() ); for (int i = 0; i < inum; i++) { force[i][0] += f_temp[i].x; force[i][1] += f_temp[i].y; force[i][2] += f_temp[i].z; } if (eflag) { CUDA_SAFE_CALL( cudaMemcpy(energy, d_energy, inum*sizeof(float), cudaMemcpyDeviceToHost) ); for (int i = 0; i < inum; i++) { evdwl += energy[i]; } evdwl *= 0.5f; } if (vflag) { CUDA_SAFE_CALL( cudaMemcpy(v_temp, d_virial, inum*2*sizeof(float3), cudaMemcpyDeviceToHost) ); for (int i = 0; i < inum; i++) { virial[0] += v_temp[2*i].x; virial[1] += v_temp[2*i].y; virial[2] += v_temp[2*i].z; virial[3] += v_temp[2*i+1].x; virial[4] += v_temp[2*i+1].y; virial[5] += v_temp[2*i+1].z; } for (int i = 0; i < 6; i++) virial[i] *= 0.5f; } TIMING( static double postTime = 0. ); TIMING( postTime += cTimer2.GetET() ); TIMING( printf("postprocess Time = %f ms\n", postTime*1e3) ); TIMING( printf("Data process time = %f ms\n", (postTime+copyTime)*1e3) ); TIMING( static double totalTime = 0. ); TIMING( totalTime += cTimer.GetET() ); TIMING( printf("lj_gpu time = %f ms\n", totalTime*1e3) ); return evdwl; } EXTERN double lj_gpu_neigh(double **force, double *virial, double **host_x, int *host_type, const int inum, const int nall, const int ago, const bool eflag, const bool vflag, const double *boxlo, const double *boxhi) { return _lj_gpu_neigh(force, virial, host_x, host_type, inum, nall, ago, eflag, vflag, boxlo, boxhi); } template double _lj_gpu_cell(double **force, double *virial, double **host_x, int *host_type, const int inum, const int nall, const int ago, const bool eflag, const bool vflag, const double *boxlo, const double *boxhi) { double evdwl=0.0; static int ncell = ncellx*ncelly*ncellz; static int first_call = 1; // allocate memory on CPU and GPU if (first_call || ago == 0) { if (!first_call) { if (useCache) { unbind_pos(); unbind_type(); } free(energy); free(v_temp); CUDA_SAFE_CALL( cudaFree(d_force) ); CUDA_SAFE_CALL( cudaFree(d_energy) ); CUDA_SAFE_CALL( cudaFree(d_virial) ); CUDA_SAFE_CALL( cudaFree(d_pos) ); CUDA_SAFE_CALL( cudaFree(d_type) ); CUDA_SAFE_CALL( cudaFreeHost(f_temp) ); CUDA_SAFE_CALL( cudaFreeHost(temp_pos) ); clear_cell_list_gpu(d_cell_list); } energy = (float*) malloc(inum*sizeof(float)); v_temp = (float3*)malloc(inum*2*sizeof(float3)); cudaMalloc((void**)&d_force, inum*sizeof(float3)); cudaMalloc((void**)&d_energy, inum*sizeof(float)); cudaMalloc((void**)&d_virial, inum*3*sizeof(float3)); CUDA_SAFE_CALL( cudaMalloc((void**)&d_pos, nall*sizeof(float4)) ); CUDA_SAFE_CALL( cudaMalloc((void**)&d_type, nall*sizeof(int)) ); CUDA_SAFE_CALL( cudaMallocHost((void**)&f_temp, inum*sizeof(float3)) ); CUDA_SAFE_CALL( cudaMallocHost((void**)&temp_pos, nall*sizeof(float4)) ); init_cell_list_gpu(d_cell_list, nall, ncell); CUDA_SAFE_CALL( cudaMemcpy(d_type, host_type, nall*sizeof(int), cudaMemcpyHostToDevice) ); if (useCache) { bind_pos(d_pos, nall); bind_type(d_type, nall); } first_call = 0; } /* build cell-list on GPU */ double *atom_pos = host_x[0]; for (int i = 0; i < 3*nall; i+=3) { temp_pos[i/3] = make_float4(atom_pos[i], atom_pos[i+1], atom_pos[i+2], 0.f); } CUDA_SAFE_CALL( cudaMemcpy(d_pos, temp_pos, nall*sizeof(float4), cudaMemcpyHostToDevice) ); if (ago == 0) { build_cell_list_gpu(d_pos, d_cell_list, h_boxlo, h_boxhi, cell_size, inum, nall); } calc_lj_cell_gpu(d_force, d_energy, d_virial, d_pos, d_type, d_cell_list, inum, nall, ncellx, ncelly, ncellz, cell_size, eflag, vflag); CUDA_SAFE_CALL( cudaMemcpy(f_temp, d_force, inum*sizeof(float3), cudaMemcpyDeviceToHost) ); for (int i = 0; i < inum; i++) { force[i][0] += f_temp[i].x; force[i][1] += f_temp[i].y; force[i][2] += f_temp[i].z; } if (eflag) { CUDA_SAFE_CALL( cudaMemcpy(energy, d_energy, inum*sizeof(float), cudaMemcpyDeviceToHost) ); for (int i = 0; i < inum; i++) { evdwl += energy[i]; } evdwl *= 0.5f; } if (vflag) { CUDA_SAFE_CALL( cudaMemcpy(v_temp, d_virial, inum*2*sizeof(float3), cudaMemcpyDeviceToHost) ); for (int i = 0; i < inum; i++) { virial[0] += v_temp[2*i].x; virial[1] += v_temp[2*i].y; virial[2] += v_temp[2*i].z; virial[3] += v_temp[2*i+1].x; virial[4] += v_temp[2*i+1].y; virial[5] += v_temp[2*i+1].z; } for (int i = 0; i < 6; i++) virial[i] *= 0.5f; } return evdwl; } EXTERN double lj_gpu_cell(double **force, double *virial, double **host_x, int *host_type, const int inum, const int nall, const int ago, const bool eflag, const bool vflag, const double *boxlo, const double *boxhi) { return _lj_gpu_cell(force, virial, host_x, host_type, inum, nall, ago, eflag, vflag, boxlo, boxhi); } EXTERN void lj_gpu_time() { /* cout.precision(4); cout << "Atom copy: " << LJMF.time_atom.total_seconds() << " s.\n"; cout << "Neighbor copy: " << LJMF.time_nbor.total_seconds() << " s.\n"; cout << "LJ calc: " << LJMF.time_pair.total_seconds() << " s.\n";*/ //cout << "Answer copy: " << LJMF.time_answer.total_seconds() << " s.\n"; } EXTERN int lj_gpu_num_devices() { int num_devices; CUDA_SAFE_CALL( cudaGetDeviceCount(&num_devices) ); return num_devices; } EXTERN double lj_gpu_bytes() { return 0.0; }