/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_reduce.h" #include "arg_info.h" #include "atom.h" #include "domain.h" #include "error.h" #include "fix.h" #include "group.h" #include "input.h" #include "memory.h" #include "modify.h" #include "update.h" #include "variable.h" #include using namespace LAMMPS_NS; #define BIG 1.0e20 /* ---------------------------------------------------------------------- */ ComputeReduce::ComputeReduce(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), nvalues(0), which(nullptr), argindex(nullptr), flavor(nullptr), value2index(nullptr), ids(nullptr), onevec(nullptr), replace(nullptr), indices(nullptr), owner(nullptr), idregion(nullptr), region(nullptr), varatom(nullptr) { int iarg = 0; if (strcmp(style, "reduce") == 0) { if (narg < 5) error->all(FLERR, "Illegal compute reduce command"); iarg = 3; } else if (strcmp(style, "reduce/region") == 0) { if (narg < 6) error->all(FLERR, "Illegal compute reduce/region command"); if (!domain->get_region_by_id(arg[3])) error->all(FLERR, "Region {} for compute reduce/region does not exist", arg[3]); idregion = utils::strdup(arg[3]); iarg = 4; } if (strcmp(arg[iarg], "sum") == 0) mode = SUM; else if (strcmp(arg[iarg], "sumsq") == 0) mode = SUMSQ; else if (strcmp(arg[iarg], "min") == 0) mode = MINN; else if (strcmp(arg[iarg], "max") == 0) mode = MAXX; else if (strcmp(arg[iarg], "ave") == 0) mode = AVE; else if (strcmp(arg[iarg], "avesq") == 0) mode = AVESQ; else error->all(FLERR, "Illegal compute {} operation {}", style, arg[iarg]); iarg++; MPI_Comm_rank(world, &me); // expand args if any have wildcard character "*" int expand = 0; char **earg; int nargnew = utils::expand_args(FLERR, narg - iarg, &arg[iarg], 1, earg, lmp); if (earg != &arg[iarg]) expand = 1; arg = earg; // parse values until one isn't recognized which = new int[nargnew]; argindex = new int[nargnew]; flavor = new int[nargnew]; ids = new char *[nargnew]; value2index = new int[nargnew]; for (int i = 0; i < nargnew; ++i) { which[i] = argindex[i] = flavor[i] = value2index[i] = ArgInfo::UNKNOWN; ids[i] = nullptr; } nvalues = 0; iarg = 0; while (iarg < nargnew) { ids[nvalues] = nullptr; if (strcmp(arg[iarg], "x") == 0) { which[nvalues] = ArgInfo::X; argindex[nvalues++] = 0; } else if (strcmp(arg[iarg], "y") == 0) { which[nvalues] = ArgInfo::X; argindex[nvalues++] = 1; } else if (strcmp(arg[iarg], "z") == 0) { which[nvalues] = ArgInfo::X; argindex[nvalues++] = 2; } else if (strcmp(arg[iarg], "vx") == 0) { which[nvalues] = ArgInfo::V; argindex[nvalues++] = 0; } else if (strcmp(arg[iarg], "vy") == 0) { which[nvalues] = ArgInfo::V; argindex[nvalues++] = 1; } else if (strcmp(arg[iarg], "vz") == 0) { which[nvalues] = ArgInfo::V; argindex[nvalues++] = 2; } else if (strcmp(arg[iarg], "fx") == 0) { which[nvalues] = ArgInfo::F; argindex[nvalues++] = 0; } else if (strcmp(arg[iarg], "fy") == 0) { which[nvalues] = ArgInfo::F; argindex[nvalues++] = 1; } else if (strcmp(arg[iarg], "fz") == 0) { which[nvalues] = ArgInfo::F; argindex[nvalues++] = 2; } else { ArgInfo argi(arg[iarg]); which[nvalues] = argi.get_type(); argindex[nvalues] = argi.get_index1(); ids[nvalues] = argi.copy_name(); if ((which[nvalues] == ArgInfo::UNKNOWN) || (argi.get_dim() > 1)) error->all(FLERR, "Illegal compute reduce command"); if (which[nvalues] == ArgInfo::NONE) break; nvalues++; } iarg++; } // optional args replace = new int[nvalues]; for (int i = 0; i < nvalues; i++) replace[i] = -1; while (iarg < nargnew) { if (strcmp(arg[iarg], "replace") == 0) { if (iarg + 3 > narg) error->all(FLERR, "Illegal compute reduce command"); if (mode != MINN && mode != MAXX) error->all(FLERR, "Compute reduce replace requires min or max mode"); int col1 = utils::inumeric(FLERR, arg[iarg + 1], false, lmp) - 1; int col2 = utils::inumeric(FLERR, arg[iarg + 2], false, lmp) - 1; if (col1 < 0 || col1 >= nvalues || col2 < 0 || col2 >= nvalues) error->all(FLERR, "Illegal compute reduce command"); if (col1 == col2) error->all(FLERR, "Illegal compute reduce command"); if (replace[col1] >= 0 || replace[col2] >= 0) error->all(FLERR, "Invalid replace values in compute reduce"); replace[col1] = col2; iarg += 3; } else error->all(FLERR, "Illegal compute reduce command"); } // delete replace if not set int flag = 0; for (int i = 0; i < nvalues; i++) if (replace[i] >= 0) flag = 1; if (!flag) { delete[] replace; replace = nullptr; } // if wildcard expansion occurred, free earg memory from expand_args() if (expand) { for (int i = 0; i < nargnew; i++) delete[] earg[i]; memory->sfree(earg); } // setup and error check for (int i = 0; i < nvalues; i++) { if (which[i] == ArgInfo::X || which[i] == ArgInfo::V || which[i] == ArgInfo::F) flavor[i] = PERATOM; else if (which[i] == ArgInfo::COMPUTE) { int icompute = modify->find_compute(ids[i]); if (icompute < 0) error->all(FLERR, "Compute ID for compute reduce does not exist"); if (modify->compute[icompute]->peratom_flag) { flavor[i] = PERATOM; if (argindex[i] == 0 && modify->compute[icompute]->size_peratom_cols != 0) error->all(FLERR, "Compute reduce compute does not " "calculate a per-atom vector"); if (argindex[i] && modify->compute[icompute]->size_peratom_cols == 0) error->all(FLERR, "Compute reduce compute does not " "calculate a per-atom array"); if (argindex[i] && argindex[i] > modify->compute[icompute]->size_peratom_cols) error->all(FLERR, "Compute reduce compute array is accessed out-of-range"); } else if (modify->compute[icompute]->local_flag) { flavor[i] = LOCAL; if (argindex[i] == 0 && modify->compute[icompute]->size_local_cols != 0) error->all(FLERR, "Compute reduce compute does not " "calculate a local vector"); if (argindex[i] && modify->compute[icompute]->size_local_cols == 0) error->all(FLERR, "Compute reduce compute does not " "calculate a local array"); if (argindex[i] && argindex[i] > modify->compute[icompute]->size_local_cols) error->all(FLERR, "Compute reduce compute array is accessed out-of-range"); } else error->all(FLERR, "Compute reduce compute calculates global values"); } else if (which[i] == ArgInfo::FIX) { auto ifix = modify->get_fix_by_id(ids[i]); if (!ifix) error->all(FLERR, "Fix ID {} for compute reduce does not exist", ids[i]); if (ifix->peratom_flag) { flavor[i] = PERATOM; if (argindex[i] == 0 && (ifix->size_peratom_cols != 0)) error->all(FLERR, "Compute reduce fix {} does not calculate a per-atom vector", ids[i]); if (argindex[i] && (ifix->size_peratom_cols == 0)) error->all(FLERR, "Compute reduce fix {} does not calculate a per-atom array", ids[i]); if (argindex[i] && (argindex[i] > ifix->size_peratom_cols)) error->all(FLERR, "Compute reduce fix {} array is accessed out-of-range", ids[i]); } else if (ifix->local_flag) { flavor[i] = LOCAL; if (argindex[i] == 0 && (ifix->size_local_cols != 0)) error->all(FLERR, "Compute reduce fix {} does not calculate a local vector", ids[i]); if (argindex[i] && (ifix->size_local_cols == 0)) error->all(FLERR, "Compute reduce fix {} does not calculate a local array", ids[i]); if (argindex[i] && (argindex[i] > ifix->size_local_cols)) error->all(FLERR, "Compute reduce fix {} array is accessed out-of-range", ids[i]); } else error->all(FLERR, "Compute reduce fix {} calculates global values", ids[i]); } else if (which[i] == ArgInfo::VARIABLE) { int ivariable = input->variable->find(ids[i]); if (ivariable < 0) error->all(FLERR, "Variable name for compute reduce does not exist"); if (input->variable->atomstyle(ivariable) == 0) error->all(FLERR, "Compute reduce variable is not atom-style variable"); flavor[i] = PERATOM; } } // this compute produces either a scalar or vector if (nvalues == 1) { scalar_flag = 1; if (mode == SUM || mode == SUMSQ) extscalar = 1; else extscalar = 0; vector = onevec = nullptr; indices = owner = nullptr; } else { vector_flag = 1; size_vector = nvalues; if (mode == SUM || mode == SUMSQ) extvector = 1; else extvector = 0; vector = new double[size_vector]; onevec = new double[size_vector]; indices = new int[size_vector]; owner = new int[size_vector]; } maxatom = 0; varatom = nullptr; } /* ---------------------------------------------------------------------- */ ComputeReduce::~ComputeReduce() { delete[] which; delete[] argindex; delete[] flavor; for (int m = 0; m < nvalues; m++) delete[] ids[m]; delete[] ids; delete[] value2index; delete[] replace; delete[] idregion; delete[] vector; delete[] onevec; delete[] indices; delete[] owner; memory->destroy(varatom); } /* ---------------------------------------------------------------------- */ void ComputeReduce::init() { // set indices of all computes,fixes,variables for (int m = 0; m < nvalues; m++) { if (which[m] == ArgInfo::COMPUTE) { int icompute = modify->find_compute(ids[m]); if (icompute < 0) error->all(FLERR, "Compute ID for compute reduce does not exist"); value2index[m] = icompute; } else if (which[m] == ArgInfo::FIX) { int ifix = modify->find_fix(ids[m]); if (ifix < 0) error->all(FLERR, "Fix ID for compute reduce does not exist"); value2index[m] = ifix; } else if (which[m] == ArgInfo::VARIABLE) { int ivariable = input->variable->find(ids[m]); if (ivariable < 0) error->all(FLERR, "Variable name for compute reduce does not exist"); value2index[m] = ivariable; } else value2index[m] = ArgInfo::UNKNOWN; } // set index and check validity of region if (idregion) { region = domain->get_region_by_id(idregion); if (!region) error->all(FLERR, "Region {} for compute reduce/region does not exist", idregion); } } /* ---------------------------------------------------------------------- */ double ComputeReduce::compute_scalar() { invoked_scalar = update->ntimestep; double one = compute_one(0, -1); if (mode == SUM || mode == SUMSQ) { MPI_Allreduce(&one, &scalar, 1, MPI_DOUBLE, MPI_SUM, world); } else if (mode == MINN) { MPI_Allreduce(&one, &scalar, 1, MPI_DOUBLE, MPI_MIN, world); } else if (mode == MAXX) { MPI_Allreduce(&one, &scalar, 1, MPI_DOUBLE, MPI_MAX, world); } else if (mode == AVE || mode == AVESQ) { MPI_Allreduce(&one, &scalar, 1, MPI_DOUBLE, MPI_SUM, world); bigint n = count(0); if (n) scalar /= n; } return scalar; } /* ---------------------------------------------------------------------- */ void ComputeReduce::compute_vector() { invoked_vector = update->ntimestep; for (int m = 0; m < nvalues; m++) if (!replace || replace[m] < 0) { onevec[m] = compute_one(m, -1); indices[m] = index; } if (mode == SUM || mode == SUMSQ) { for (int m = 0; m < nvalues; m++) MPI_Allreduce(&onevec[m], &vector[m], 1, MPI_DOUBLE, MPI_SUM, world); } else if (mode == MINN) { if (!replace) { for (int m = 0; m < nvalues; m++) MPI_Allreduce(&onevec[m], &vector[m], 1, MPI_DOUBLE, MPI_MIN, world); } else { for (int m = 0; m < nvalues; m++) if (replace[m] < 0) { pairme.value = onevec[m]; pairme.proc = me; MPI_Allreduce(&pairme, &pairall, 1, MPI_DOUBLE_INT, MPI_MINLOC, world); vector[m] = pairall.value; owner[m] = pairall.proc; } for (int m = 0; m < nvalues; m++) if (replace[m] >= 0) { if (me == owner[replace[m]]) vector[m] = compute_one(m, indices[replace[m]]); MPI_Bcast(&vector[m], 1, MPI_DOUBLE, owner[replace[m]], world); } } } else if (mode == MAXX) { if (!replace) { for (int m = 0; m < nvalues; m++) MPI_Allreduce(&onevec[m], &vector[m], 1, MPI_DOUBLE, MPI_MAX, world); } else { for (int m = 0; m < nvalues; m++) if (replace[m] < 0) { pairme.value = onevec[m]; pairme.proc = me; MPI_Allreduce(&pairme, &pairall, 1, MPI_DOUBLE_INT, MPI_MAXLOC, world); vector[m] = pairall.value; owner[m] = pairall.proc; } for (int m = 0; m < nvalues; m++) if (replace[m] >= 0) { if (me == owner[replace[m]]) vector[m] = compute_one(m, indices[replace[m]]); MPI_Bcast(&vector[m], 1, MPI_DOUBLE, owner[replace[m]], world); } } } else if (mode == AVE || mode == AVESQ) { for (int m = 0; m < nvalues; m++) { MPI_Allreduce(&onevec[m], &vector[m], 1, MPI_DOUBLE, MPI_SUM, world); bigint n = count(m); if (n) vector[m] /= n; } } } /* ---------------------------------------------------------------------- calculate reduced value for one input M and return it if flag = -1: sum/min/max/ave all values in vector for per-atom quantities, limit to atoms in group if mode = MIN or MAX, also set index to which vector value wins if flag >= 0: simply return vector[flag] ------------------------------------------------------------------------- */ double ComputeReduce::compute_one(int m, int flag) { int i; // invoke the appropriate attribute,compute,fix,variable // for flag = -1, compute scalar quantity by scanning over atom properties // only include atoms in group for atom properties and per-atom quantities index = -1; int vidx = value2index[m]; // initialization in case it has not yet been run, e.g. when // the compute was invoked right after it has been created if (vidx == ArgInfo::UNKNOWN) { init(); vidx = value2index[m]; } int aidx = argindex[m]; int *mask = atom->mask; int nlocal = atom->nlocal; double one = 0.0; if (mode == MINN) one = BIG; if (mode == MAXX) one = -BIG; if (which[m] == ArgInfo::X) { double **x = atom->x; if (flag < 0) { for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) combine(one, x[i][aidx], i); } else one = x[flag][aidx]; } else if (which[m] == ArgInfo::V) { double **v = atom->v; if (flag < 0) { for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) combine(one, v[i][aidx], i); } else one = v[flag][aidx]; } else if (which[m] == ArgInfo::F) { double **f = atom->f; if (flag < 0) { for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) combine(one, f[i][aidx], i); } else one = f[flag][aidx]; // invoke compute if not previously invoked } else if (which[m] == ArgInfo::COMPUTE) { Compute *compute = modify->compute[vidx]; if (flavor[m] == PERATOM) { if (!(compute->invoked_flag & Compute::INVOKED_PERATOM)) { compute->compute_peratom(); compute->invoked_flag |= Compute::INVOKED_PERATOM; } if (aidx == 0) { double *comp_vec = compute->vector_atom; int n = nlocal; if (flag < 0) { for (i = 0; i < n; i++) if (mask[i] & groupbit) combine(one, comp_vec[i], i); } else one = comp_vec[flag]; } else { double **carray_atom = compute->array_atom; int n = nlocal; int aidxm1 = aidx - 1; if (flag < 0) { for (i = 0; i < n; i++) if (mask[i] & groupbit) combine(one, carray_atom[i][aidxm1], i); } else one = carray_atom[flag][aidxm1]; } } else if (flavor[m] == LOCAL) { if (!(compute->invoked_flag & Compute::INVOKED_LOCAL)) { compute->compute_local(); compute->invoked_flag |= Compute::INVOKED_LOCAL; } if (aidx == 0) { double *comp_vec = compute->vector_local; int n = compute->size_local_rows; if (flag < 0) for (i = 0; i < n; i++) combine(one, comp_vec[i], i); else one = comp_vec[flag]; } else { double **carray_local = compute->array_local; int n = compute->size_local_rows; int aidxm1 = aidx - 1; if (flag < 0) for (i = 0; i < n; i++) combine(one, carray_local[i][aidxm1], i); else one = carray_local[flag][aidxm1]; } } // access fix fields, check if fix frequency is a match } else if (which[m] == ArgInfo::FIX) { if (update->ntimestep % modify->fix[vidx]->peratom_freq) error->all(FLERR, "Fix used in compute reduce not " "computed at compatible time"); Fix *fix = modify->fix[vidx]; if (flavor[m] == PERATOM) { if (aidx == 0) { double *fix_vector = fix->vector_atom; int n = nlocal; if (flag < 0) { for (i = 0; i < n; i++) if (mask[i] & groupbit) combine(one, fix_vector[i], i); } else one = fix_vector[flag]; } else { double **fix_array = fix->array_atom; int aidxm1 = aidx - 1; if (flag < 0) { for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) combine(one, fix_array[i][aidxm1], i); } else one = fix_array[flag][aidxm1]; } } else if (flavor[m] == LOCAL) { if (aidx == 0) { double *fix_vector = fix->vector_local; int n = fix->size_local_rows; if (flag < 0) for (i = 0; i < n; i++) combine(one, fix_vector[i], i); else one = fix_vector[flag]; } else { double **fix_array = fix->array_local; int n = fix->size_local_rows; int aidxm1 = aidx - 1; if (flag < 0) for (i = 0; i < n; i++) combine(one, fix_array[i][aidxm1], i); else one = fix_array[flag][aidxm1]; } } // evaluate atom-style variable } else if (which[m] == ArgInfo::VARIABLE) { if (atom->nmax > maxatom) { maxatom = atom->nmax; memory->destroy(varatom); memory->create(varatom, maxatom, "reduce:varatom"); } input->variable->compute_atom(vidx, igroup, varatom, 1, 0); if (flag < 0) { for (i = 0; i < nlocal; i++) if (mask[i] & groupbit) combine(one, varatom[i], i); } else one = varatom[flag]; } return one; } /* ---------------------------------------------------------------------- */ bigint ComputeReduce::count(int m) { int vidx = value2index[m]; if (which[m] == ArgInfo::X || which[m] == ArgInfo::V || which[m] == ArgInfo::F) return group->count(igroup); else if (which[m] == ArgInfo::COMPUTE) { Compute *compute = modify->compute[vidx]; if (flavor[m] == PERATOM) { return group->count(igroup); } else if (flavor[m] == LOCAL) { bigint ncount = compute->size_local_rows; bigint ncountall; MPI_Allreduce(&ncount, &ncountall, 1, MPI_LMP_BIGINT, MPI_SUM, world); return ncountall; } } else if (which[m] == ArgInfo::FIX) { Fix *fix = modify->fix[vidx]; if (flavor[m] == PERATOM) { return group->count(igroup); } else if (flavor[m] == LOCAL) { bigint ncount = fix->size_local_rows; bigint ncountall; MPI_Allreduce(&ncount, &ncountall, 1, MPI_LMP_BIGINT, MPI_SUM, world); return ncountall; } } else if (which[m] == ArgInfo::VARIABLE) return group->count(igroup); bigint dummy = 0; return dummy; } /* ---------------------------------------------------------------------- combine two values according to reduction mode for MIN/MAX, also update index with winner ------------------------------------------------------------------------- */ void ComputeReduce::combine(double &one, double two, int i) { if (mode == SUM || mode == AVE) one += two; else if (mode == SUMSQ || mode == AVESQ) one += two * two; else if (mode == MINN) { if (two < one) { one = two; index = i; } } else if (mode == MAXX) { if (two > one) { one = two; index = i; } } } /* ---------------------------------------------------------------------- memory usage of varatom ------------------------------------------------------------------------- */ double ComputeReduce::memory_usage() { double bytes = (double) maxatom * sizeof(double); return bytes; }