/* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://lammps.sandia.gov/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "compute_chunk_spread_atom.h" #include "arg_info.h" #include "atom.h" #include "compute.h" #include "compute_chunk_atom.h" #include "error.h" #include "fix.h" #include "memory.h" #include "modify.h" #include "update.h" #include using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- */ ComputeChunkSpreadAtom:: ComputeChunkSpreadAtom(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg), idchunk(nullptr), ids(nullptr), which(nullptr), argindex(nullptr), value2index(nullptr) { if (narg < 5) error->all(FLERR,"Illegal compute chunk/spread/atom command"); // ID of compute chunk/atom idchunk = utils::strdup(arg[3]); init_chunk(); // expand args if any have wildcard character "*" int iarg = 4; int expand = 0; char **earg; int nargnew = utils::expand_args(FLERR,narg-iarg,&arg[iarg],1,earg,lmp); if (earg != &arg[iarg]) expand = 1; arg = earg; // parse values which = new int[nargnew]; argindex = new int[nargnew]; ids = new char*[nargnew]; value2index = new int[nargnew]; nvalues = 0; for (iarg = 0; iarg < nargnew; iarg++) { ids[nvalues] = nullptr; ArgInfo argi(arg[iarg], ArgInfo::COMPUTE|ArgInfo::FIX); which[nvalues] = argi.get_type(); argindex[nvalues] = argi.get_index1(); ids[nvalues] = argi.copy_name(); if ((which[nvalues] == ArgInfo::UNKNOWN) || (which[nvalues] == ArgInfo::NONE) || (argi.get_dim() > 1)) error->all(FLERR,"Illegal compute chunk/spread/atom command"); nvalues++; } // if wildcard expansion occurred, free earg memory from expand_args() if (expand) { for (int i = 0; i < nargnew; i++) delete [] earg[i]; memory->sfree(earg); } // setup and error check // for compute, must calculate per-chunk values, i.e. style ends in "/chunk" // for fix, assume a global vector or array is per-chunk data for (int i = 0; i < nvalues; i++) { if (which[i] == ArgInfo::COMPUTE) { int icompute = modify->find_compute(ids[i]); if (icompute < 0) error->all(FLERR,"Compute ID for compute chunk/spread/atom " "does not exist"); if (!utils::strmatch(modify->compute[icompute]->style,"/chunk$")) error->all(FLERR,"Compute for compute chunk/spread/atom " "does not calculate per-chunk values"); if (argindex[i] == 0) { if (!modify->compute[icompute]->vector_flag) error->all(FLERR,"Compute chunk/spread/atom compute " "does not calculate global vector"); } else { if (!modify->compute[icompute]->array_flag) error->all(FLERR,"Compute chunk/spread/atom compute " "does not calculate global array"); if (argindex[i] > modify->compute[icompute]->size_array_cols) error->all(FLERR,"Compute chunk/spread/atom compute array " "is accessed out-of-range"); } } else if (which[i] == ArgInfo::FIX) { int ifix = modify->find_fix(ids[i]); if (ifix < 0) error->all(FLERR,"Fix ID for compute chunk/spread/atom does not exist"); if (argindex[i] == 0) { if (!modify->fix[ifix]->vector_flag) error->all(FLERR,"Compute chunk/spread/atom fix " "does not calculate global vector"); } else { if (!modify->fix[ifix]->array_flag) error->all(FLERR,"Compute chunk/spread/atom fix " "does not calculate global array"); if (argindex[i] > modify->fix[ifix]->size_array_cols) error->all(FLERR,"Compute chunk/spread/atom fix array " "is accessed out-of-range"); } } } // this compute produces a peratom vector or array peratom_flag = 1; if (nvalues == 1) size_peratom_cols = 0; else size_peratom_cols = nvalues; // per-atom vector or array nmax = 0; vector_atom = nullptr; array_atom = nullptr; } /* ---------------------------------------------------------------------- */ ComputeChunkSpreadAtom::~ComputeChunkSpreadAtom() { delete [] idchunk; delete [] which; delete [] argindex; for (int i = 0; i < nvalues; i++) delete [] ids[i]; delete [] ids; delete [] value2index; memory->destroy(vector_atom); memory->destroy(array_atom); } /* ---------------------------------------------------------------------- */ void ComputeChunkSpreadAtom::init() { init_chunk(); // set indices of all computes,fixes,variables for (int m = 0; m < nvalues; m++) { if (which[m] == ArgInfo::COMPUTE) { int icompute = modify->find_compute(ids[m]); if (icompute < 0) error->all(FLERR,"Compute ID for compute chunk/spread/atom " "does not exist"); value2index[m] = icompute; } else if (which[m] == ArgInfo::FIX) { int ifix = modify->find_fix(ids[m]); if (ifix < 0) error->all(FLERR,"Fix ID for compute chunk/spread/atom does not exist"); value2index[m] = ifix; } } } /* ---------------------------------------------------------------------- */ void ComputeChunkSpreadAtom::init_chunk() { int icompute = modify->find_compute(idchunk); if (icompute < 0) error->all(FLERR,"Chunk/atom compute does not exist for compute chunk/spread/atom"); cchunk = (ComputeChunkAtom *) modify->compute[icompute]; if (strcmp(cchunk->style,"chunk/atom") != 0) error->all(FLERR,"Compute chunk/spread/atom does not use chunk/atom compute"); } /* ---------------------------------------------------------------------- */ void ComputeChunkSpreadAtom::compute_peratom() { invoked_peratom = update->ntimestep; // grow local vector_atom or array_atom if necessary if (atom->nmax > nmax) { if (nvalues == 1) { memory->destroy(vector_atom); nmax = atom->nmax; memory->create(vector_atom,nmax,"chunk/spread/atom:vector_atom"); } else { memory->destroy(array_atom); nmax = atom->nmax; memory->create(array_atom,nmax,nvalues,"chunk/spread/atom:array_atom"); } } // compute chunk/atom assigns atoms to chunk IDs // extract ichunk index vector from compute // ichunk = 1 to Nchunk for included atoms, 0 for excluded atoms int nchunk = cchunk->setup_chunks(); cchunk->compute_ichunk(); int *ichunk = cchunk->ichunk; // loop over values, access compute or fix // loop over atoms, use chunk ID of each atom to store value from compute/fix int *mask = atom->mask; int nlocal = atom->nlocal; int i,m,n,index,nstride; double *ptr; for (m = 0; m < nvalues; m++) { n = value2index[m]; // copy compute/fix values into vector_atom or array_atom // nstride between values for each atom if (nvalues == 1) { ptr = vector_atom; nstride = 1; } else { ptr = &array_atom[0][m]; nstride = nvalues; } // invoke compute if not previously invoked if (which[m] == ArgInfo::COMPUTE) { Compute *compute = modify->compute[n]; if (argindex[m] == 0) { if (!(compute->invoked_flag & Compute::INVOKED_VECTOR)) { compute->compute_vector(); compute->invoked_flag |= Compute::INVOKED_VECTOR; } double *cvector = compute->vector; for (i = 0; i < nlocal; i++, ptr += nstride) { *ptr = 0.0; if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0 || index >= nchunk) continue; *ptr = cvector[index]; } } else { if (!(compute->invoked_flag & Compute::INVOKED_ARRAY)) { compute->compute_array(); compute->invoked_flag |= Compute::INVOKED_ARRAY; } int icol = argindex[m]-1; double **carray = compute->array; for (i = 0; i < nlocal; i++, ptr += nstride) { *ptr = 0.0; if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0 || index >= nchunk) continue; *ptr = carray[index][icol]; } } // access fix data, check if fix frequency is a match // are assuming the fix global vector/array is per-chunk data // check if index exceeds fix output length/rows } else if (which[m] == ArgInfo::FIX) { Fix *fix = modify->fix[n]; if (update->ntimestep % fix->global_freq) error->all(FLERR,"Fix used in compute chunk/spread/atom not " "computed at compatible time"); if (argindex[m] == 0) { int nfix = fix->size_vector; for (i = 0; i < nlocal; i++, ptr += nstride) { *ptr = 0.0; if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0 || index >= nchunk || index >= nfix) continue; *ptr = fix->compute_vector(index); } } else { int icol = argindex[m]-1; int nfix = fix->size_array_rows; for (i = 0; i < nlocal; i++, ptr += nstride) { *ptr = 0.0; if (!(mask[i] & groupbit)) continue; index = ichunk[i]-1; if (index < 0 || index >= nchunk || index >= nfix) continue; *ptr = fix->compute_array(index,icol); } } } } } /* ---------------------------------------------------------------------- memory usage of local atom-based array ------------------------------------------------------------------------- */ double ComputeChunkSpreadAtom::memory_usage() { double bytes = (double)nmax*nvalues * sizeof(double); return bytes; }