664 lines
18 KiB
C++
664 lines
18 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Alexander Stukowski (stukowski at mm.tu-darmstadt.de)
|
|
------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
Concentration-dependent EAM (CD-EAM) potential for multi-component
|
|
systems.
|
|
|
|
This potential class implements an improved version of the original
|
|
CD-EAM formalism. The new version (a.k.a. one-site model;
|
|
cdeamVersion==1) has been published in
|
|
|
|
A. Stukowski, B. Sadigh, P. Erhart and A. Caro
|
|
Efficient implementation of the concentration-dependent embedded
|
|
atom method for molecular-dynamics and Monte-Carlo simulations
|
|
Model. Simul. Mater. Sci. Eng., 2009, 075005
|
|
|
|
This new formulation is more efficient for MD and Monte-Carlo
|
|
simulations and is the default.
|
|
|
|
The original formulation (a.k.a. two-site model; cdeamVersion==2) is
|
|
also implemented and has been published in
|
|
|
|
A. Caro, D. A. Crowson and M. Caro
|
|
Classical Many-Body Potential for Concentrated Alloys and the
|
|
Inversion of Order in Iron-Chromium Alloys
|
|
Phys. Rev. Lett., APS, 2005, 95, 075702
|
|
*/
|
|
|
|
#include "math.h"
|
|
#include "stdio.h"
|
|
#include "stdlib.h"
|
|
#include "string.h"
|
|
#include "pair_cdeam.h"
|
|
#include "atom.h"
|
|
#include "force.h"
|
|
#include "comm.h"
|
|
#include "neighbor.h"
|
|
#include "neigh_list.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
//using namespace std;
|
|
|
|
// This is for debugging purposes. The ASSERT() macro is used in the code to check
|
|
// if everything runs as expected. Change this to #if 0 if you don't need the checking.
|
|
#if 0
|
|
#define ASSERT(cond) ((!(cond)) ? my_failure(error,__FILE__,__LINE__) : my_noop())
|
|
|
|
inline void my_noop() {}
|
|
inline void my_failure(Error* error, const char* file, int line) {
|
|
char str[1024];
|
|
sprintf(str,"Assertion failure: File %s, line %i", file, line);
|
|
error->one(str);
|
|
}
|
|
#else
|
|
#define ASSERT(cond)
|
|
#endif
|
|
|
|
#define MAXLINE 1024 // This sets the maximum line length in EAM input files.
|
|
|
|
PairCDEAM::PairCDEAM(LAMMPS *lmp, int _cdeamVersion) : PairEAM(lmp), PairEAMAlloy(lmp), cdeamVersion(_cdeamVersion)
|
|
{
|
|
single_enable = 0;
|
|
rhoB = NULL;
|
|
D_values = NULL;
|
|
hcoeff = NULL;
|
|
|
|
// Set communication buffer sizes needed by this pair style.
|
|
if(cdeamVersion == 1) {
|
|
comm_forward = 4;
|
|
comm_reverse = 3;
|
|
}
|
|
else if(cdeamVersion == 2) {
|
|
comm_forward = 3;
|
|
comm_reverse = 2;
|
|
}
|
|
else {
|
|
error->all("Invalid CD-EAM potential version.");
|
|
}
|
|
}
|
|
|
|
PairCDEAM::~PairCDEAM()
|
|
{
|
|
memory->sfree(rhoB);
|
|
memory->sfree(D_values);
|
|
if(hcoeff) delete[] hcoeff;
|
|
}
|
|
|
|
void PairCDEAM::compute(int eflag, int vflag)
|
|
{
|
|
int i,j,ii,jj,inum,jnum,itype,jtype;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
|
|
double rsq,rhoip,rhojp,recip,phi;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
|
|
evdwl = 0.0;
|
|
if (eflag || vflag) ev_setup(eflag,vflag);
|
|
else evflag = vflag_fdotr = 0;
|
|
|
|
// Grow per-atom arrays if necessary
|
|
if(atom->nmax > nmax) {
|
|
memory->sfree(rho);
|
|
memory->sfree(fp);
|
|
memory->sfree(rhoB);
|
|
memory->sfree(D_values);
|
|
nmax = atom->nmax;
|
|
rho = (double *)memory->smalloc(nmax*sizeof(double),"pair:rho");
|
|
rhoB = (double *)memory->smalloc(nmax*sizeof(double),"pair:rhoB");
|
|
fp = (double *)memory->smalloc(nmax*sizeof(double),"pair:fp");
|
|
D_values = (double *)memory->smalloc(nmax*sizeof(double),"pair:D_values");
|
|
}
|
|
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
int newton_pair = force->newton_pair;
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// Zero out per-atom arrays.
|
|
int m = nlocal + atom->nghost;
|
|
for(i = 0; i < m; i++) {
|
|
rho[i] = 0.0;
|
|
rhoB[i] = 0.0;
|
|
D_values[i] = 0.0;
|
|
}
|
|
|
|
// Stage I
|
|
|
|
// Compute rho and rhoB at each local atom site.
|
|
// Additionally calculate the D_i values here if we are using the one-site formulation.
|
|
// For the two-site formulation we have to calculate the D values in an extra loop (Stage II).
|
|
for(ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
for(jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
|
|
if(rsq < cutforcesq) {
|
|
jtype = type[j];
|
|
double r = sqrt(rsq);
|
|
const EAMTableIndex index = radiusToTableIndex(r);
|
|
double localrho = RhoOfR(index, jtype, itype);
|
|
rho[i] += localrho;
|
|
if(jtype == speciesB) rhoB[i] += localrho;
|
|
if(newton_pair || j < nlocal) {
|
|
localrho = RhoOfR(index, itype, jtype);
|
|
rho[j] += localrho;
|
|
if(itype == speciesB) rhoB[j] += localrho;
|
|
}
|
|
|
|
if(cdeamVersion == 1 && itype != jtype) {
|
|
// Note: if the i-j interaction is not concentration dependent (because either
|
|
// i or j are not species A or B) then its contribution to D_i and D_j should
|
|
// be ignored.
|
|
// This if-clause is only required for a ternary.
|
|
if((itype == speciesA && jtype == speciesB) || (jtype == speciesA && itype == speciesB)) {
|
|
double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
|
|
D_values[i] += Phi_AB;
|
|
if(newton_pair || j < nlocal)
|
|
D_values[j] += Phi_AB;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Communicate and sum densities.
|
|
if(newton_pair) {
|
|
communicationStage = 1;
|
|
comm->reverse_comm_pair(this);
|
|
}
|
|
|
|
// fp = derivative of embedding energy at each atom
|
|
// phi = embedding energy at each atom
|
|
for(ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
EAMTableIndex index = rhoToTableIndex(rho[i]);
|
|
fp[i] = FPrimeOfRho(index, type[i]);
|
|
if(eflag) {
|
|
phi = FofRho(index, type[i]);
|
|
if(eflag_global) eng_vdwl += phi;
|
|
if(eflag_atom) eatom[i] += phi;
|
|
}
|
|
}
|
|
|
|
// Communicate derivative of embedding function and densities
|
|
// and D_values (this for one-site formulation only).
|
|
communicationStage = 2;
|
|
comm->comm_pair(this);
|
|
|
|
// The electron densities may not drop to zero because then the concentration would no longer be defined.
|
|
// But the concentration is not needed anyway if there is no interaction with another atom, which is the case
|
|
// if the electron density is exactly zero. That's why the following lines have been commented out.
|
|
//
|
|
//for(i = 0; i < nlocal + atom->nghost; i++) {
|
|
// if(rho[i] == 0 && (type[i] == speciesA || type[i] == speciesB))
|
|
// error->one("CD-EAM potential routine: Detected atom with zero electron density.");
|
|
//}
|
|
|
|
// Stage II
|
|
// This is only required for the original two-site formulation of the CD-EAM potential.
|
|
|
|
if(cdeamVersion == 2) {
|
|
// Compute intermediate value D_i for each atom.
|
|
for(ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// This code line is required for ternary alloys.
|
|
if(itype != speciesA && itype != speciesB) continue;
|
|
|
|
double x_i = rhoB[i] / rho[i]; // Concentration at atom i.
|
|
|
|
for(jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
jtype = type[j];
|
|
if(itype == jtype) continue;
|
|
|
|
// This code line is required for ternary alloys.
|
|
if(jtype != speciesA && jtype != speciesB) continue;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
|
|
if(rsq < cutforcesq) {
|
|
double r = sqrt(rsq);
|
|
const EAMTableIndex index = radiusToTableIndex(r);
|
|
|
|
// The concentration independent part of the cross pair potential.
|
|
double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
|
|
|
|
// Average concentration of two sites
|
|
double x_ij = 0.5 * (x_i + rhoB[j]/rho[j]);
|
|
|
|
// Calculate derivative of h(x_ij) polynomial function.
|
|
double h_prime = evalHprime(x_ij);
|
|
|
|
D_values[i] += h_prime * Phi_AB / (2.0 * rho[i] * rho[i]);
|
|
if(newton_pair || j < nlocal)
|
|
D_values[j] += h_prime * Phi_AB / (2.0 * rho[j] * rho[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Communicate and sum D values.
|
|
if(newton_pair) {
|
|
communicationStage = 3;
|
|
comm->reverse_comm_pair(this);
|
|
}
|
|
communicationStage = 4;
|
|
comm->comm_pair(this);
|
|
}
|
|
|
|
// Stage III
|
|
|
|
// Compute force acting on each atom.
|
|
for(ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// Concentration at site i
|
|
double x_i = -1.0; // The value -1 indicates: no concentration dependence for all interactions of atom i.
|
|
// It will be replaced by the concentration at site i if atom i is either A or B.
|
|
|
|
double D_i, h_prime_i;
|
|
|
|
// This if-clause is only required for ternary alloys.
|
|
if((itype == speciesA || itype == speciesB) && rho[i] != 0.0) {
|
|
|
|
// Compute local concentration at site i.
|
|
x_i = rhoB[i]/rho[i];
|
|
ASSERT(x_i >= 0 && x_i<=1.0);
|
|
|
|
if(cdeamVersion == 1) {
|
|
// Calculate derivative of h(x_i) polynomial function.
|
|
h_prime_i = evalHprime(x_i);
|
|
D_i = D_values[i] * h_prime_i / (2.0 * rho[i] * rho[i]);
|
|
}
|
|
else if(cdeamVersion == 2) {
|
|
D_i = D_values[i];
|
|
}
|
|
else ASSERT(false);
|
|
}
|
|
|
|
for(jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
|
|
if(rsq < cutforcesq) {
|
|
jtype = type[j];
|
|
double r = sqrt(rsq);
|
|
const EAMTableIndex index = radiusToTableIndex(r);
|
|
|
|
// rhoip = derivative of (density at atom j due to atom i)
|
|
// rhojp = derivative of (density at atom i due to atom j)
|
|
// psip needs both fp[i] and fp[j] terms since r_ij appears in two
|
|
// terms of embed eng: Fi(sum rho_ij) and Fj(sum rho_ji)
|
|
// hence embed' = Fi(sum rho_ij) rhojp + Fj(sum rho_ji) rhoip
|
|
rhoip = RhoPrimeOfR(index, itype, jtype);
|
|
rhojp = RhoPrimeOfR(index, jtype, itype);
|
|
fpair = fp[i]*rhojp + fp[j]*rhoip;
|
|
recip = 1.0/r;
|
|
|
|
double x_j = -1; // The value -1 indicates: no concentration dependence for this i-j pair
|
|
// because atom j is not of species A nor B.
|
|
|
|
// This code line is required for ternary alloy.
|
|
if(jtype == speciesA || jtype == speciesB) {
|
|
ASSERT(rho[i] != 0.0);
|
|
ASSERT(rho[j] != 0.0);
|
|
|
|
// Compute local concentration at site j.
|
|
x_j = rhoB[j]/rho[j];
|
|
ASSERT(x_j >= 0 && x_j<=1.0);
|
|
|
|
double D_j;
|
|
if(cdeamVersion == 1) {
|
|
// Calculate derivative of h(x_j) polynomial function.
|
|
double h_prime_j = evalHprime(x_j);
|
|
D_j = D_values[j] * h_prime_j / (2.0 * rho[j] * rho[j]);
|
|
}
|
|
else if(cdeamVersion == 2) {
|
|
D_j = D_values[j];
|
|
}
|
|
else ASSERT(false);
|
|
|
|
double t2 = -rhoB[j];
|
|
if(itype == speciesB) t2 += rho[j];
|
|
fpair += D_j * rhoip * t2;
|
|
}
|
|
|
|
// This if-clause is only required for a ternary alloy.
|
|
// Actually we don't need it at all because D_i should be zero anyway if
|
|
// atom i has no concentration dependent interactions (because it is not species A or B).
|
|
if(x_i != -1.0) {
|
|
double t1 = -rhoB[i];
|
|
if(jtype == speciesB) t1 += rho[i];
|
|
fpair += D_i * rhojp * t1;
|
|
}
|
|
|
|
double phip;
|
|
double phi = PhiOfR(index, itype, jtype, recip, phip);
|
|
if(itype == jtype || x_i == -1.0 || x_j == -1.0) {
|
|
// Case of no concentration dependence.
|
|
fpair += phip;
|
|
}
|
|
else {
|
|
// We have a concentration dependence for the i-j interaction.
|
|
double h;
|
|
if(cdeamVersion == 1) {
|
|
// Calculate h(x_i) polynomial function.
|
|
double h_i = evalH(x_i);
|
|
// Calculate h(x_j) polynomial function.
|
|
double h_j = evalH(x_j);
|
|
h = 0.5 * (h_i + h_j);
|
|
}
|
|
else if(cdeamVersion == 2) {
|
|
// Average concentration.
|
|
double x_ij = 0.5 * (x_i + x_j);
|
|
// Calculate h(x_ij) polynomial function.
|
|
h = evalH(x_ij);
|
|
}
|
|
else ASSERT(false);
|
|
fpair += h * phip;
|
|
phi *= h;
|
|
}
|
|
|
|
// Divide by r_ij and negate to get forces from gradient.
|
|
fpair /= -r;
|
|
|
|
f[i][0] += delx*fpair;
|
|
f[i][1] += dely*fpair;
|
|
f[i][2] += delz*fpair;
|
|
if(newton_pair || j < nlocal) {
|
|
f[j][0] -= delx*fpair;
|
|
f[j][1] -= dely*fpair;
|
|
f[j][2] -= delz*fpair;
|
|
}
|
|
|
|
if(eflag) evdwl = phi;
|
|
if(evflag) ev_tally(i,j,nlocal,newton_pair,evdwl,0.0,fpair,delx,dely,delz);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(vflag_fdotr) virial_compute();
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairCDEAM::coeff(int narg, char **arg)
|
|
{
|
|
PairEAMAlloy::coeff(narg, arg);
|
|
|
|
// Make sure the EAM file is a CD-EAM binary alloy.
|
|
if(setfl->nelements < 2)
|
|
error->all("The EAM file must contain at least 2 elements to be used with the eam/cd pair style.");
|
|
|
|
// Read in the coefficients of the h polynomial from the end of the EAM file.
|
|
read_h_coeff(arg[2]);
|
|
|
|
// Determine which atom type is the A species and which is the B species in the alloy.
|
|
// By default take the first element (index 0) in the EAM file as the A species
|
|
// and the second element (index 1) in the EAM file as the B species.
|
|
speciesA = -1;
|
|
speciesB = -1;
|
|
for(int i = 1; i <= atom->ntypes; i++) {
|
|
if(map[i] == 0) {
|
|
if(speciesA >= 0)
|
|
error->all("The first element from the EAM file may only be mapped to a single atom type.");
|
|
speciesA = i;
|
|
}
|
|
if(map[i] == 1) {
|
|
if(speciesB >= 0)
|
|
error->all("The second element from the EAM file may only be mapped to a single atom type.");
|
|
speciesB = i;
|
|
}
|
|
}
|
|
if(speciesA < 0)
|
|
error->all("The first element from the EAM file must be mapped to exactly one atom type.");
|
|
if(speciesB < 0)
|
|
error->all("The second element from the EAM file must be mapped to exactly one atom type.");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Reads in the h(x) polynomial coefficients
|
|
------------------------------------------------------------------------- */
|
|
void PairCDEAM::read_h_coeff(char *filename)
|
|
{
|
|
if(comm->me == 0) {
|
|
// Open potential file
|
|
FILE *fp;
|
|
char line[MAXLINE];
|
|
char nextline[MAXLINE];
|
|
fp = fopen(filename,"r");
|
|
if (fp == NULL) {
|
|
char str[128];
|
|
sprintf(str,"Cannot open EAM potential file %s", filename);
|
|
error->one(str);
|
|
}
|
|
|
|
// h coefficients are stored at the end of the file.
|
|
// Skip to last line of file.
|
|
while(fgets(nextline, MAXLINE, fp) != NULL) {
|
|
strcpy(line, nextline);
|
|
}
|
|
char* ptr = strtok(line, " \t\n\r\f");
|
|
int degree = atoi(ptr);
|
|
nhcoeff = degree+1;
|
|
hcoeff = new double[nhcoeff];
|
|
int i = 0;
|
|
while((ptr = strtok(NULL," \t\n\r\f")) != NULL && i < nhcoeff) {
|
|
hcoeff[i++] = atof(ptr);
|
|
}
|
|
if(i != nhcoeff || nhcoeff < 1)
|
|
error->one("Failed to read h(x) function coefficients from EAM file.");
|
|
|
|
// Close the potential file.
|
|
fclose(fp);
|
|
}
|
|
|
|
MPI_Bcast(&nhcoeff, 1, MPI_INT, 0, world);
|
|
if(comm->me != 0) hcoeff = new double[nhcoeff];
|
|
MPI_Bcast(hcoeff, nhcoeff, MPI_DOUBLE, 0, world);
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
int PairCDEAM::pack_comm(int n, int *list, double *buf, int pbc_flag, int *pbc)
|
|
{
|
|
int i,j,m;
|
|
|
|
m = 0;
|
|
if(communicationStage == 2) {
|
|
if(cdeamVersion == 1) {
|
|
for (i = 0; i < n; i++) {
|
|
j = list[i];
|
|
buf[m++] = fp[j];
|
|
buf[m++] = rho[j];
|
|
buf[m++] = rhoB[j];
|
|
buf[m++] = D_values[j];
|
|
}
|
|
return 4;
|
|
}
|
|
else if(cdeamVersion == 2) {
|
|
for (i = 0; i < n; i++) {
|
|
j = list[i];
|
|
buf[m++] = fp[j];
|
|
buf[m++] = rho[j];
|
|
buf[m++] = rhoB[j];
|
|
}
|
|
return 3;
|
|
}
|
|
else { ASSERT(false); return 0; }
|
|
}
|
|
else if(communicationStage == 4) {
|
|
for (i = 0; i < n; i++) {
|
|
j = list[i];
|
|
buf[m++] = D_values[j];
|
|
}
|
|
return 1;
|
|
}
|
|
else return 0;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairCDEAM::unpack_comm(int n, int first, double *buf)
|
|
{
|
|
int i,m,last;
|
|
|
|
m = 0;
|
|
last = first + n;
|
|
if(communicationStage == 2) {
|
|
if(cdeamVersion == 1) {
|
|
for(i = first; i < last; i++) {
|
|
fp[i] = buf[m++];
|
|
rho[i] = buf[m++];
|
|
rhoB[i] = buf[m++];
|
|
D_values[i] = buf[m++];
|
|
}
|
|
}
|
|
else if(cdeamVersion == 2) {
|
|
for(i = first; i < last; i++) {
|
|
fp[i] = buf[m++];
|
|
rho[i] = buf[m++];
|
|
rhoB[i] = buf[m++];
|
|
}
|
|
}
|
|
else ASSERT(false);
|
|
}
|
|
else if(communicationStage == 4) {
|
|
for(i = first; i < last; i++) {
|
|
D_values[i] = buf[m++];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
int PairCDEAM::pack_reverse_comm(int n, int first, double *buf)
|
|
{
|
|
int i,m,last;
|
|
|
|
m = 0;
|
|
last = first + n;
|
|
|
|
if(communicationStage == 1) {
|
|
if(cdeamVersion == 1) {
|
|
for(i = first; i < last; i++) {
|
|
buf[m++] = rho[i];
|
|
buf[m++] = rhoB[i];
|
|
buf[m++] = D_values[i];
|
|
}
|
|
return 3;
|
|
}
|
|
else if(cdeamVersion == 2) {
|
|
for(i = first; i < last; i++) {
|
|
buf[m++] = rho[i];
|
|
buf[m++] = rhoB[i];
|
|
}
|
|
return 2;
|
|
}
|
|
else { ASSERT(false); return 0; }
|
|
}
|
|
else if(communicationStage == 3) {
|
|
for(i = first; i < last; i++) {
|
|
buf[m++] = D_values[i];
|
|
}
|
|
return 1;
|
|
}
|
|
else return 0;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairCDEAM::unpack_reverse_comm(int n, int *list, double *buf)
|
|
{
|
|
int i,j,m;
|
|
|
|
m = 0;
|
|
if(communicationStage == 1) {
|
|
if(cdeamVersion == 1) {
|
|
for(i = 0; i < n; i++) {
|
|
j = list[i];
|
|
rho[j] += buf[m++];
|
|
rhoB[j] += buf[m++];
|
|
D_values[j] += buf[m++];
|
|
}
|
|
}
|
|
else if(cdeamVersion == 2) {
|
|
for(i = 0; i < n; i++) {
|
|
j = list[i];
|
|
rho[j] += buf[m++];
|
|
rhoB[j] += buf[m++];
|
|
}
|
|
}
|
|
else ASSERT(false);
|
|
}
|
|
else if(communicationStage == 3) {
|
|
for(i = 0; i < n; i++) {
|
|
j = list[i];
|
|
D_values[j] += buf[m++];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
memory usage of local atom-based arrays
|
|
------------------------------------------------------------------------- */
|
|
double PairCDEAM::memory_usage()
|
|
{
|
|
double bytes = 2 * nmax * sizeof(double);
|
|
return PairEAMAlloy::memory_usage() + bytes;
|
|
}
|