545 lines
17 KiB
C++
545 lines
17 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Aidan Thompson (SNL)
|
|
improved CG and backtrack ls, added quadratic ls
|
|
Sources: Numerical Recipes frprmn routine
|
|
"Conjugate Gradient Method Without the Agonizing Pain" by
|
|
JR Shewchuk, http://www-2.cs.cmu.edu/~jrs/jrspapers.html#cg
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "math.h"
|
|
#include "min_linesearch.h"
|
|
#include "atom.h"
|
|
#include "update.h"
|
|
#include "neighbor.h"
|
|
#include "domain.h"
|
|
#include "modify.h"
|
|
#include "fix_minimize.h"
|
|
#include "pair.h"
|
|
#include "output.h"
|
|
#include "thermo.h"
|
|
#include "timer.h"
|
|
#include "error.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
// ALPHA_MAX = max alpha allowed to avoid long backtracks
|
|
// ALPHA_REDUCE = reduction ratio, should be in range [0.5,1)
|
|
// BACKTRACK_SLOPE, should be in range (0,0.5]
|
|
// QUADRATIC_TOL = tolerance on alpha0, should be in range [0.1,1)
|
|
// IDEAL_TOL = ideal energy tolerance for backtracking
|
|
// EPS_QUAD = tolerance for quadratic projection
|
|
|
|
#define ALPHA_MAX 1.0
|
|
#define ALPHA_REDUCE 0.5
|
|
#define BACKTRACK_SLOPE 0.4
|
|
#define IDEAL_TOL 1.0e-8
|
|
#define QUADRATIC_TOL 0.1
|
|
#define EPS_QUAD 1.0e-28
|
|
|
|
// same as in other min classes
|
|
|
|
enum{MAXITER,MAXEVAL,ETOL,FTOL,DOWNHILL,ZEROALPHA,ZEROFORCE,ZEROQUAD};
|
|
|
|
#define MIN(A,B) ((A) < (B)) ? (A) : (B)
|
|
#define MAX(A,B) ((A) > (B)) ? (A) : (B)
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
MinLineSearch::MinLineSearch(LAMMPS *lmp) : Min(lmp)
|
|
{
|
|
gextra = hextra = NULL;
|
|
x0extra_atom = gextra_atom = hextra_atom = NULL;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
MinLineSearch::~MinLineSearch()
|
|
{
|
|
delete [] gextra;
|
|
delete [] hextra;
|
|
delete [] x0extra_atom;
|
|
delete [] gextra_atom;
|
|
delete [] hextra_atom;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void MinLineSearch::init_style()
|
|
{
|
|
if (linestyle == 0) linemin = &MinLineSearch::linemin_backtrack;
|
|
else if (linestyle == 1) linemin = &MinLineSearch::linemin_quadratic;
|
|
|
|
delete [] gextra;
|
|
delete [] hextra;
|
|
gextra = hextra = NULL;
|
|
|
|
delete [] x0extra_atom;
|
|
delete [] gextra_atom;
|
|
delete [] hextra_atom;
|
|
x0extra_atom = gextra_atom = hextra_atom = NULL;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void MinLineSearch::setup_style()
|
|
{
|
|
// memory for x0,g,h for atomic dof
|
|
|
|
fix_minimize->add_vector(3);
|
|
fix_minimize->add_vector(3);
|
|
fix_minimize->add_vector(3);
|
|
|
|
// memory for g,h for extra global dof, fix stores x0
|
|
|
|
if (nextra_global) {
|
|
gextra = new double[nextra_global];
|
|
hextra = new double[nextra_global];
|
|
}
|
|
|
|
// memory for x0,g,h for extra per-atom dof
|
|
|
|
if (nextra_atom) {
|
|
x0extra_atom = new double*[nextra_atom];
|
|
gextra_atom = new double*[nextra_atom];
|
|
hextra_atom = new double*[nextra_atom];
|
|
|
|
for (int m = 0; m < nextra_atom; m++) {
|
|
fix_minimize->add_vector(extra_peratom[m]);
|
|
fix_minimize->add_vector(extra_peratom[m]);
|
|
fix_minimize->add_vector(extra_peratom[m]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set current vector lengths and pointers
|
|
called after atoms have migrated
|
|
------------------------------------------------------------------------- */
|
|
|
|
void MinLineSearch::reset_vectors()
|
|
{
|
|
// atomic dof
|
|
|
|
nvec = 3 * atom->nlocal;
|
|
if (nvec) xvec = atom->x[0];
|
|
if (nvec) fvec = atom->f[0];
|
|
x0 = fix_minimize->request_vector(0);
|
|
g = fix_minimize->request_vector(1);
|
|
h = fix_minimize->request_vector(2);
|
|
|
|
// extra per-atom dof
|
|
|
|
if (nextra_atom) {
|
|
int n = 3;
|
|
for (int m = 0; m < nextra_atom; m++) {
|
|
extra_nlen[m] = extra_peratom[m] * atom->nlocal;
|
|
requestor[m]->min_pointers(&xextra_atom[m],&fextra_atom[m]);
|
|
x0extra_atom[m] = fix_minimize->request_vector(n++);
|
|
gextra_atom[m] = fix_minimize->request_vector(n++);
|
|
hextra_atom[m] = fix_minimize->request_vector(n++);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
line minimization methods
|
|
find minimum-energy starting at x along h direction
|
|
input args: eoriginal = energy at initial x
|
|
input extra: n,x,x0,f,h for atomic, extra global, extra per-atom dof
|
|
output args: return 0 if successful move, non-zero alpha
|
|
return non-zero if failed
|
|
alpha = distance moved along h for x at min eng config
|
|
update neval counter of eng/force function evaluations
|
|
output extra: if fail, energy_force() of original x
|
|
if succeed, energy_force() at x + alpha*h
|
|
atom->x = coords at new configuration
|
|
atom->f = force at new configuration
|
|
ecurrent = energy of new configuration
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
linemin: backtracking line search (Proc 3.1, p 41 in Nocedal and Wright)
|
|
uses no gradient info, but should be very robust
|
|
start at maxdist, backtrack until energy decrease is sufficient
|
|
------------------------------------------------------------------------- */
|
|
|
|
int MinLineSearch::linemin_backtrack(double eoriginal, double &alpha)
|
|
{
|
|
int i,m,n;
|
|
double fdothall,fdothme,hme,hmax,hmaxall;
|
|
double de_ideal,de;
|
|
double *xatom,*x0atom,*fatom,*hatom;
|
|
|
|
// fdothall = projection of search dir along downhill gradient
|
|
// if search direction is not downhill, exit with error
|
|
|
|
fdothme = 0.0;
|
|
for (i = 0; i < nvec; i++) fdothme += fvec[i]*h[i];
|
|
if (nextra_atom)
|
|
for (m = 0; m < nextra_atom; m++) {
|
|
fatom = fextra_atom[m];
|
|
hatom = hextra_atom[m];
|
|
n = extra_nlen[m];
|
|
for (i = 0; i < n; i++) fdothme += fatom[i]*hatom[i];
|
|
}
|
|
MPI_Allreduce(&fdothme,&fdothall,1,MPI_DOUBLE,MPI_SUM,world);
|
|
if (nextra_global)
|
|
for (i = 0; i < nextra_global; i++) fdothall += fextra[i]*hextra[i];
|
|
if (output->thermo->normflag) fdothall /= atom->natoms;
|
|
if (fdothall <= 0.0) return DOWNHILL;
|
|
|
|
// set alpha so no dof is changed by more than max allowed amount
|
|
// for atom coords, max amount = dmax
|
|
// for extra per-atom dof, max amount = extra_max[]
|
|
// for extra global dof, max amount is set by fix
|
|
// also insure alpha <= ALPHA_MAX
|
|
// else will have to backtrack from huge value when forces are tiny
|
|
// if all search dir components are already 0.0, exit with error
|
|
|
|
hme = 0.0;
|
|
for (i = 0; i < nvec; i++) hme = MAX(hme,fabs(h[i]));
|
|
MPI_Allreduce(&hme,&hmaxall,1,MPI_DOUBLE,MPI_MAX,world);
|
|
alpha = MIN(ALPHA_MAX,dmax/hmaxall);
|
|
if (nextra_atom)
|
|
for (m = 0; m < nextra_atom; m++) {
|
|
hme = 0.0;
|
|
fatom = fextra_atom[m];
|
|
n = extra_nlen[m];
|
|
for (i = 0; i < n; i++) hme = MAX(hme,fabs(hatom[i]));
|
|
MPI_Allreduce(&hme,&hmax,1,MPI_DOUBLE,MPI_MAX,world);
|
|
alpha = MIN(alpha,extra_max[m]/hmax);
|
|
hmaxall = MAX(hmaxall,hmax);
|
|
}
|
|
if (nextra_global) {
|
|
double alpha_extra = modify->max_alpha(hextra);
|
|
alpha = MIN(alpha,alpha_extra);
|
|
for (i = 0; i < nextra_global; i++)
|
|
hmaxall = MAX(hmaxall,fabs(hextra[i]));
|
|
}
|
|
if (hmaxall == 0.0) return ZEROFORCE;
|
|
|
|
// store box and values of all dof at start of linesearch
|
|
|
|
fix_minimize->store_box();
|
|
for (i = 0; i < nvec; i++) x0[i] = xvec[i];
|
|
if (nextra_atom)
|
|
for (m = 0; m < nextra_atom; m++) {
|
|
xatom = xextra_atom[m];
|
|
x0atom = x0extra_atom[m];
|
|
n = extra_nlen[m];
|
|
for (i = 0; i < n; i++) x0atom[i] = xatom[i];
|
|
}
|
|
if (nextra_global) modify->min_store();
|
|
|
|
// Important diagnostic: test the gradient against energy
|
|
// double etmp;
|
|
// double alphatmp = alphamax*1.0e-4;
|
|
// etmp = alpha_step(alphatmp,1);
|
|
// printf("alpha = %g dele = %g dele_force = %g err = %g\n",
|
|
// alphatmp,etmp-eoriginal,-alphatmp*fdothall,
|
|
// etmp-eoriginal+alphatmp*fdothall);
|
|
// alpha_step(0.0,1);
|
|
|
|
// backtrack with alpha until energy decrease is sufficient
|
|
|
|
while (1) {
|
|
ecurrent = alpha_step(alpha,1);
|
|
|
|
// if energy change is better than ideal, exit with success
|
|
|
|
de_ideal = -BACKTRACK_SLOPE*alpha*fdothall;
|
|
de = ecurrent - eoriginal;
|
|
if (de <= de_ideal) {
|
|
if (nextra_global) {
|
|
int itmp = modify->min_reset_ref();
|
|
if (itmp) ecurrent = energy_force(1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// reduce alpha
|
|
|
|
alpha *= ALPHA_REDUCE;
|
|
|
|
// backtracked all the way to 0.0
|
|
// reset to starting point, exit with error
|
|
|
|
if (alpha <= 0.0 || de_ideal >= -IDEAL_TOL) {
|
|
ecurrent = alpha_step(0.0,0);
|
|
return ZEROALPHA;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
// linemin: quadratic line search (adapted from Dennis and Schnabel)
|
|
// The objective function is approximated by a quadratic
|
|
// function in alpha, for sufficiently small alpha.
|
|
// This idea is the same as that used in the well-known secant
|
|
// method. However, since the change in the objective function
|
|
// (difference of two finite numbers) is not known as accurately
|
|
// as the gradient (which is close to zero), all the expressions
|
|
// are written in terms of gradients. In this way, we can converge
|
|
// the LAMMPS forces much closer to zero.
|
|
//
|
|
// We know E,Eprev,fh,fhprev. The Taylor series about alpha_prev
|
|
// truncated at the quadratic term is:
|
|
//
|
|
// E = Eprev - del_alpha*fhprev + (1/2)del_alpha^2*Hprev
|
|
//
|
|
// and
|
|
//
|
|
// fh = fhprev - del_alpha*Hprev
|
|
//
|
|
// where del_alpha = alpha-alpha_prev
|
|
//
|
|
// We solve these two equations for Hprev and E=Esolve, giving:
|
|
//
|
|
// Esolve = Eprev - del_alpha*(f+fprev)/2
|
|
//
|
|
// We define relerr to be:
|
|
//
|
|
// relerr = |(Esolve-E)/Eprev|
|
|
// = |1.0 - (0.5*del_alpha*(f+fprev)+E)/Eprev|
|
|
//
|
|
// If this is accurate to within a reasonable tolerance, then
|
|
// we go ahead and use a secant step to fh = 0:
|
|
//
|
|
// alpha0 = alpha - (alpha-alphaprev)*fh/delfh;
|
|
//
|
|
------------------------------------------------------------------------- */
|
|
|
|
int MinLineSearch::linemin_quadratic(double eoriginal, double &alpha)
|
|
{
|
|
int i,m,n;
|
|
double fdothall,fdothme,hme,hmax,hmaxall;
|
|
double de_ideal,de;
|
|
double delfh,engprev,relerr,alphaprev,fhprev,ff,fh,alpha0,fh0,ff0;
|
|
double dot[2],dotall[2];
|
|
double *xatom,*x0atom,*fatom,*hatom;
|
|
double alphamax;
|
|
|
|
// fdothall = projection of search dir along downhill gradient
|
|
// if search direction is not downhill, exit with error
|
|
|
|
fdothme = 0.0;
|
|
for (i = 0; i < nvec; i++) fdothme += fvec[i]*h[i];
|
|
if (nextra_atom)
|
|
for (m = 0; m < nextra_atom; m++) {
|
|
fatom = fextra_atom[m];
|
|
hatom = hextra_atom[m];
|
|
n = extra_nlen[m];
|
|
for (i = 0; i < n; i++) fdothme += fatom[i]*hatom[i];
|
|
}
|
|
MPI_Allreduce(&fdothme,&fdothall,1,MPI_DOUBLE,MPI_SUM,world);
|
|
if (nextra_global)
|
|
for (i = 0; i < nextra_global; i++) fdothall += fextra[i]*hextra[i];
|
|
if (output->thermo->normflag) fdothall /= atom->natoms;
|
|
if (fdothall <= 0.0) return DOWNHILL;
|
|
|
|
// set alphamax so no dof is changed by more than max allowed amount
|
|
// for atom coords, max amount = dmax
|
|
// for extra per-atom dof, max amount = extra_max[]
|
|
// for extra global dof, max amount is set by fix
|
|
// also insure alphamax <= ALPHA_MAX
|
|
// else will have to backtrack from huge value when forces are tiny
|
|
// if all search dir components are already 0.0, exit with error
|
|
|
|
hme = 0.0;
|
|
for (i = 0; i < nvec; i++) hme = MAX(hme,fabs(h[i]));
|
|
MPI_Allreduce(&hme,&hmaxall,1,MPI_DOUBLE,MPI_MAX,world);
|
|
alphamax = MIN(ALPHA_MAX,dmax/hmaxall);
|
|
if (nextra_atom)
|
|
for (m = 0; m < nextra_atom; m++) {
|
|
hme = 0.0;
|
|
fatom = fextra_atom[m];
|
|
n = extra_nlen[m];
|
|
for (i = 0; i < n; i++) hme = MAX(hme,fabs(hatom[i]));
|
|
MPI_Allreduce(&hme,&hmax,1,MPI_DOUBLE,MPI_MAX,world);
|
|
alphamax = MIN(alphamax,extra_max[m]/hmax);
|
|
hmaxall = MAX(hmaxall,hmax);
|
|
}
|
|
if (nextra_global) {
|
|
double alpha_extra = modify->max_alpha(hextra);
|
|
alphamax = MIN(alphamax,alpha_extra);
|
|
for (i = 0; i < nextra_global; i++)
|
|
hmaxall = MAX(hmaxall,fabs(hextra[i]));
|
|
}
|
|
|
|
if (hmaxall == 0.0) return ZEROFORCE;
|
|
|
|
// store box and values of all dof at start of linesearch
|
|
|
|
fix_minimize->store_box();
|
|
for (i = 0; i < nvec; i++) x0[i] = xvec[i];
|
|
if (nextra_atom)
|
|
for (m = 0; m < nextra_atom; m++) {
|
|
xatom = xextra_atom[m];
|
|
x0atom = x0extra_atom[m];
|
|
n = extra_nlen[m];
|
|
for (i = 0; i < n; i++) x0atom[i] = xatom[i];
|
|
}
|
|
if (nextra_global) modify->min_store();
|
|
|
|
// backtrack with alpha until energy decrease is sufficient
|
|
// or until get to small energy change, then perform quadratic projection
|
|
|
|
alpha = alphamax;
|
|
fhprev = fdothall;
|
|
engprev = eoriginal;
|
|
alphaprev = 0.0;
|
|
|
|
// Important diagnostic: test the gradient against energy
|
|
// double etmp;
|
|
// double alphatmp = alphamax*1.0e-4;
|
|
// etmp = alpha_step(alphatmp,1);
|
|
// printf("alpha = %g dele = %g dele_force = %g err = %g\n",
|
|
// alphatmp,etmp-eoriginal,-alphatmp*fdothall,
|
|
// etmp-eoriginal+alphatmp*fdothall);
|
|
// alpha_step(0.0,1);
|
|
|
|
while (1) {
|
|
ecurrent = alpha_step(alpha,1);
|
|
|
|
// compute new fh, alpha, delfh
|
|
|
|
dot[0] = dot[1] = 0.0;
|
|
for (i = 0; i < nvec; i++) {
|
|
dot[0] += fvec[i]*fvec[i];
|
|
dot[1] += fvec[i]*h[i];
|
|
}
|
|
if (nextra_atom)
|
|
for (m = 0; m < nextra_atom; m++) {
|
|
xatom = xextra_atom[m];
|
|
hatom = hextra_atom[m];
|
|
n = extra_nlen[m];
|
|
for (i = 0; i < n; i++) {
|
|
dot[0] += fatom[i]*fatom[i];
|
|
dot[1] += fatom[i]*hatom[i];
|
|
}
|
|
}
|
|
MPI_Allreduce(dot,dotall,2,MPI_DOUBLE,MPI_SUM,world);
|
|
if (nextra_global) {
|
|
for (i = 0; i < nextra_global; i++) {
|
|
dotall[0] += fextra[i]*fextra[i];
|
|
dotall[1] += fextra[i]*hextra[i];
|
|
}
|
|
}
|
|
ff = dotall[0];
|
|
fh = dotall[1];
|
|
if (output->thermo->normflag) {
|
|
ff /= atom->natoms;
|
|
fh /= atom->natoms;
|
|
}
|
|
|
|
delfh = fh - fhprev;
|
|
|
|
// if fh or delfh is epsilon, reset to starting point, exit with error
|
|
|
|
if (fabs(fh) < EPS_QUAD || fabs(delfh) < EPS_QUAD) {
|
|
ecurrent = alpha_step(0.0,0);
|
|
return ZEROQUAD;
|
|
}
|
|
|
|
// Check if ready for quadratic projection, equivalent to secant method
|
|
// alpha0 = projected alpha
|
|
|
|
relerr = fabs(1.0-(0.5*(alpha-alphaprev)*(fh+fhprev)+ecurrent)/engprev);
|
|
alpha0 = alpha - (alpha-alphaprev)*fh/delfh;
|
|
|
|
if (relerr <= QUADRATIC_TOL && alpha0 > 0.0 && alpha0 < alphamax) {
|
|
ecurrent = alpha_step(alpha0,1);
|
|
if (ecurrent < eoriginal) {
|
|
if (nextra_global) {
|
|
int itmp = modify->min_reset_ref();
|
|
if (itmp) ecurrent = energy_force(1);
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// if backtracking energy change is better than ideal, exit with success
|
|
|
|
de_ideal = -BACKTRACK_SLOPE*alpha*fdothall;
|
|
de = ecurrent - eoriginal;
|
|
|
|
if (de <= de_ideal) {
|
|
if (nextra_global) {
|
|
int itmp = modify->min_reset_ref();
|
|
if (itmp) ecurrent = energy_force(1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// save previous state
|
|
|
|
fhprev = fh;
|
|
engprev = ecurrent;
|
|
alphaprev = alpha;
|
|
|
|
// reduce alpha
|
|
|
|
alpha *= ALPHA_REDUCE;
|
|
|
|
// backtracked all the way to 0.0
|
|
// reset to starting point, exit with error
|
|
|
|
if (alpha <= 0.0 || de_ideal >= -IDEAL_TOL) {
|
|
ecurrent = alpha_step(0.0,0);
|
|
return ZEROALPHA;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double MinLineSearch::alpha_step(double alpha, int resetflag)
|
|
{
|
|
int i,n,m;
|
|
double *xatom,*x0atom,*hatom;
|
|
|
|
// reset to starting point
|
|
|
|
if (nextra_global) modify->min_step(0.0,hextra);
|
|
for (i = 0; i < nvec; i++) xvec[i] = x0[i];
|
|
if (nextra_atom)
|
|
for (m = 0; m < nextra_atom; m++) {
|
|
xatom = xextra_atom[m];
|
|
x0atom = x0extra_atom[m];
|
|
n = extra_nlen[m];
|
|
for (i = 0; i < n; i++) xatom[i] = x0atom[i];
|
|
}
|
|
|
|
// step forward along h
|
|
|
|
if (alpha > 0.0) {
|
|
if (nextra_global) modify->min_step(alpha,hextra);
|
|
for (i = 0; i < nvec; i++) xvec[i] += alpha*h[i];
|
|
if (nextra_atom)
|
|
for (m = 0; m < nextra_atom; m++) {
|
|
xatom = xextra_atom[m];
|
|
hatom = hextra_atom[m];
|
|
n = extra_nlen[m];
|
|
for (i = 0; i < n; i++) xatom[i] += alpha*hatom[i];
|
|
}
|
|
}
|
|
|
|
// compute and return new energy
|
|
|
|
neval++;
|
|
return energy_force(resetflag);
|
|
}
|