468 lines
13 KiB
C++
468 lines
13 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: G. Ziegenhain, gerolf@ziegenhain.com
|
|
Copyright (C) 2007
|
|
Updated algorithm by: Brian Barnes, brian.c.barnes11.civ@mail.mil
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include "compute_ackland_atom.h"
|
|
#include "atom.h"
|
|
#include "update.h"
|
|
#include "modify.h"
|
|
#include "neighbor.h"
|
|
#include "neigh_list.h"
|
|
#include "neigh_request.h"
|
|
#include "force.h"
|
|
#include "pair.h"
|
|
#include "comm.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
enum{UNKNOWN,BCC,FCC,HCP,ICO};
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
ComputeAcklandAtom::ComputeAcklandAtom(LAMMPS *lmp, int narg, char **arg) :
|
|
Compute(lmp, narg, arg)
|
|
{
|
|
if ((narg < 3) || (narg > 5))
|
|
error->all(FLERR,"Illegal compute ackland/atom command");
|
|
|
|
peratom_flag = 1;
|
|
size_peratom_cols = 0;
|
|
|
|
nmax = 0;
|
|
structure = NULL;
|
|
maxneigh = 0;
|
|
legacy = 0;
|
|
distsq = NULL;
|
|
nearest = NULL;
|
|
nearest_n0 = NULL;
|
|
nearest_n1 = NULL;
|
|
|
|
int iarg = 3;
|
|
while (narg > iarg) {
|
|
if (strcmp("legacy",arg[iarg]) == 0) {
|
|
++iarg;
|
|
if (iarg >= narg)
|
|
error->all(FLERR,"Invalid compute ackland/atom command");
|
|
if (strcmp("yes",arg[iarg]) == 0)
|
|
legacy = 1;
|
|
else if (strcmp("no",arg[iarg]) == 0)
|
|
legacy = 0;
|
|
else error->all(FLERR,"Invalid compute ackland/atom command");
|
|
}
|
|
++iarg;
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
ComputeAcklandAtom::~ComputeAcklandAtom()
|
|
{
|
|
memory->destroy(structure);
|
|
memory->destroy(distsq);
|
|
memory->destroy(nearest);
|
|
memory->destroy(nearest_n0);
|
|
memory->destroy(nearest_n1);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeAcklandAtom::init()
|
|
{
|
|
// need an occasional full neighbor list
|
|
|
|
int irequest = neighbor->request(this,instance_me);
|
|
neighbor->requests[irequest]->pair = 0;
|
|
neighbor->requests[irequest]->compute = 1;
|
|
neighbor->requests[irequest]->half = 0;
|
|
neighbor->requests[irequest]->full = 1;
|
|
neighbor->requests[irequest]->occasional = 1;
|
|
|
|
int count = 0;
|
|
for (int i = 0; i < modify->ncompute; i++)
|
|
if (strcmp(modify->compute[i]->style,"ackland/atom") == 0) count++;
|
|
if (count > 1 && comm->me == 0)
|
|
error->warning(FLERR,"More than one compute ackland/atom");
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeAcklandAtom::init_list(int id, NeighList *ptr)
|
|
{
|
|
list = ptr;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeAcklandAtom::compute_peratom()
|
|
{
|
|
int i,j,ii,jj,k,n,inum,jnum;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz,rsq;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
int chi[8];
|
|
|
|
invoked_peratom = update->ntimestep;
|
|
|
|
// grow structure array if necessary
|
|
|
|
if (atom->nmax > nmax) {
|
|
memory->destroy(structure);
|
|
nmax = atom->nmax;
|
|
memory->create(structure,nmax,"compute/ackland/atom:ackland");
|
|
vector_atom = structure;
|
|
}
|
|
|
|
// invoke full neighbor list (will copy or build if necessary)
|
|
|
|
neighbor->build_one(list);
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// compute structure parameter for each atom in group
|
|
// use full neighbor list
|
|
|
|
double **x = atom->x;
|
|
int *mask = atom->mask;
|
|
double cutsq = force->pair->cutforce * force->pair->cutforce;
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
if (mask[i] & groupbit) {
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// ensure distsq and nearest arrays are long enough
|
|
|
|
if (jnum > maxneigh) {
|
|
memory->destroy(distsq);
|
|
memory->destroy(nearest);
|
|
memory->destroy(nearest_n0);
|
|
memory->destroy(nearest_n1);
|
|
maxneigh = jnum;
|
|
memory->create(distsq,maxneigh,"compute/ackland/atom:distsq");
|
|
memory->create(nearest,maxneigh,"compute/ackland/atom:nearest");
|
|
memory->create(nearest_n0,maxneigh,"compute/ackland/atom:nearest_n0");
|
|
memory->create(nearest_n1,maxneigh,"compute/ackland/atom:nearest_n1");
|
|
}
|
|
|
|
// loop over list of all neighbors within force cutoff
|
|
// distsq[] = distance sq to each
|
|
// nearest[] = atom indices of neighbors
|
|
|
|
n = 0;
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
if (rsq < cutsq) {
|
|
distsq[n] = rsq;
|
|
nearest[n++] = j;
|
|
}
|
|
}
|
|
|
|
// Select 6 nearest neighbors
|
|
|
|
select2(6,n,distsq,nearest);
|
|
|
|
// Mean squared separation
|
|
|
|
double r0_sq = 0.;
|
|
for (j = 0; j < 6; j++)
|
|
r0_sq += distsq[j];
|
|
r0_sq /= 6.;
|
|
|
|
// n0 near neighbors with: distsq<1.45*r0_sq
|
|
// n1 near neighbors with: distsq<1.55*r0_sq
|
|
|
|
double n0_dist_sq = 1.45*r0_sq,
|
|
n1_dist_sq = 1.55*r0_sq;
|
|
int n0 = 0, n1 = 0;
|
|
for (j = 0; j < n; j++) {
|
|
if (distsq[j] < n1_dist_sq) {
|
|
nearest_n1[n1++] = nearest[j];
|
|
if (distsq[j] < n0_dist_sq) {
|
|
nearest_n0[n0++] = nearest[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Evaluate all angles <(r_ij,rik) forall n0 particles with:
|
|
// distsq < 1.45*r0_sq
|
|
|
|
double bond_angle;
|
|
double norm_j, norm_k;
|
|
chi[0] = chi[1] = chi[2] = chi[3] = chi[4] = chi[5] = chi[6] = chi[7] = 0;
|
|
double x_ij, y_ij, z_ij, x_ik, y_ik, z_ik;
|
|
for (j = 0; j < n0; j++) {
|
|
x_ij = x[i][0]-x[nearest_n0[j]][0];
|
|
y_ij = x[i][1]-x[nearest_n0[j]][1];
|
|
z_ij = x[i][2]-x[nearest_n0[j]][2];
|
|
norm_j = sqrt (x_ij*x_ij + y_ij*y_ij + z_ij*z_ij);
|
|
if (norm_j <= 0.) continue;
|
|
for (k = j+1; k < n0; k++) {
|
|
x_ik = x[i][0]-x[nearest_n0[k]][0];
|
|
y_ik = x[i][1]-x[nearest_n0[k]][1];
|
|
z_ik = x[i][2]-x[nearest_n0[k]][2];
|
|
norm_k = sqrt (x_ik*x_ik + y_ik*y_ik + z_ik*z_ik);
|
|
if (norm_k <= 0.)
|
|
continue;
|
|
|
|
bond_angle = (x_ij*x_ik + y_ij*y_ik + z_ij*z_ik) / (norm_j*norm_k);
|
|
|
|
// Histogram for identifying the relevant peaks
|
|
|
|
if (bond_angle < -0.945) chi[0]++;
|
|
else if (bond_angle < -0.915) chi[1]++;
|
|
else if (bond_angle < -0.755) chi[2]++;
|
|
else if (bond_angle < -0.195) chi[3]++;
|
|
else if (bond_angle < 0.195) chi[4]++;
|
|
else if (bond_angle < 0.245) chi[5]++;
|
|
else if (bond_angle < 0.795) chi[6]++;
|
|
else chi[7]++;
|
|
}
|
|
}
|
|
if (legacy) {
|
|
|
|
// This is the original implementation by Gerolf Ziegenhain
|
|
// Deviations from the different lattice structures
|
|
|
|
double delta_bcc = 0.35*chi[4]/(double)(chi[5]+chi[6]-chi[4]);
|
|
double delta_cp = fabs(1.-(double)chi[6]/24.);
|
|
double delta_fcc = 0.61*(fabs((double)(chi[0]+chi[1]-6.))+
|
|
(double)chi[2])/6.0;
|
|
double delta_hcp = (fabs((double)chi[0]-3.)+
|
|
fabs((double)chi[0]+(double)chi[1]+
|
|
(double)chi[2]+(double)chi[3]-9.0))/12.0;
|
|
|
|
// Identification of the local structure according to the reference
|
|
|
|
if (chi[0] == 7) { delta_bcc = 0.; }
|
|
else if (chi[0] == 6) { delta_fcc = 0.; }
|
|
else if (chi[0] <= 3) { delta_hcp = 0.; }
|
|
|
|
if (chi[7] > 0.)
|
|
structure[i] = UNKNOWN;
|
|
else
|
|
if (chi[4] < 3.)
|
|
{
|
|
if (n1 > 13 || n1 < 11)
|
|
structure[i] = UNKNOWN;
|
|
else
|
|
structure[i] = ICO;
|
|
} else
|
|
if (delta_bcc <= delta_cp)
|
|
{
|
|
if (n1 < 11)
|
|
structure[i] = UNKNOWN;
|
|
else
|
|
structure[i] = BCC;
|
|
} else
|
|
if (n1 > 12 || n1 < 11)
|
|
structure[i] = UNKNOWN;
|
|
else
|
|
if (delta_fcc < delta_hcp)
|
|
structure[i] = FCC;
|
|
else
|
|
structure[i] = HCP;
|
|
|
|
} else {
|
|
|
|
// This is the updated implementation by Brian Barnes
|
|
|
|
if (chi[7] > 0 || n0 < 11) structure[i] = UNKNOWN;
|
|
else if (chi[0] == 7) structure[i] = BCC;
|
|
else if (chi[0] == 6) structure[i] = FCC;
|
|
else if (chi[0] == 3) structure[i] = HCP;
|
|
else {
|
|
// Deviations from the different lattice structures
|
|
|
|
double delta_cp = fabs(1.-(double)chi[6]/24.);
|
|
|
|
// ensure we do not get divide by zero
|
|
// and if we will, make delta_bcc irrelevant
|
|
double delta_bcc = delta_cp + 1.0;
|
|
int chi56m4 = chi[5]+chi[6]-chi[4];
|
|
|
|
// note that chi[7] presumed zero
|
|
if (chi56m4 != 0) delta_bcc = 0.35*chi[4]/(double)chi56m4;
|
|
|
|
double delta_fcc = 0.61*(fabs((double)(chi[0]+chi[1]-6))
|
|
+(double)chi[2])/6.0;
|
|
|
|
double delta_hcp = (fabs((double)chi[0]-3.)
|
|
+fabs((double)chi[0]
|
|
+(double)chi[1]
|
|
+(double)chi[2]
|
|
+(double)chi[3]
|
|
-9.0))/12.0;
|
|
|
|
// Identification of the local structure according to the reference
|
|
|
|
if (delta_bcc >= 0.1 && delta_cp >= 0.1 && delta_fcc >= 0.1
|
|
&& delta_hcp >= 0.1) structure[i] = UNKNOWN;
|
|
|
|
// not part of Ackland-Jones 2006; included for backward compatibility
|
|
if (chi[4] < 3. && n1 == 12) structure[i] = ICO;
|
|
|
|
else {
|
|
if (delta_bcc <= delta_cp && n1 > 10 && n1 < 13) structure[i] = BCC;
|
|
else {
|
|
if (n0 > 12) structure[i] = UNKNOWN;
|
|
else {
|
|
if (delta_fcc < delta_hcp) structure[i] = FCC;
|
|
else
|
|
structure[i] = HCP;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else structure[i] = 0.0;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
2 select routines from Numerical Recipes (slightly modified)
|
|
find k smallest values in array of length n
|
|
2nd routine sorts auxiliary array at same time
|
|
------------------------------------------------------------------------- */
|
|
|
|
#define SWAP(a,b) tmp = a; a = b; b = tmp;
|
|
#define ISWAP(a,b) itmp = a; a = b; b = itmp;
|
|
|
|
void ComputeAcklandAtom::select(int k, int n, double *arr)
|
|
{
|
|
int i,ir,j,l,mid;
|
|
double a,tmp;
|
|
|
|
arr--;
|
|
l = 1;
|
|
ir = n;
|
|
for (;;) {
|
|
if (ir <= l+1) {
|
|
if (ir == l+1 && arr[ir] < arr[l]) {
|
|
SWAP(arr[l],arr[ir])
|
|
}
|
|
return;
|
|
} else {
|
|
mid=(l+ir) >> 1;
|
|
SWAP(arr[mid],arr[l+1])
|
|
if (arr[l] > arr[ir]) {
|
|
SWAP(arr[l],arr[ir])
|
|
}
|
|
if (arr[l+1] > arr[ir]) {
|
|
SWAP(arr[l+1],arr[ir])
|
|
}
|
|
if (arr[l] > arr[l+1]) {
|
|
SWAP(arr[l],arr[l+1])
|
|
}
|
|
i = l+1;
|
|
j = ir;
|
|
a = arr[l+1];
|
|
for (;;) {
|
|
do i++; while (arr[i] < a);
|
|
do j--; while (arr[j] > a);
|
|
if (j < i) break;
|
|
SWAP(arr[i],arr[j])
|
|
}
|
|
arr[l+1] = arr[j];
|
|
arr[j] = a;
|
|
if (j >= k) ir = j-1;
|
|
if (j <= k) l = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeAcklandAtom::select2(int k, int n, double *arr, int *iarr)
|
|
{
|
|
int i,ir,j,l,mid,ia,itmp;
|
|
double a,tmp;
|
|
|
|
arr--;
|
|
iarr--;
|
|
l = 1;
|
|
ir = n;
|
|
for (;;) {
|
|
if (ir <= l+1) {
|
|
if (ir == l+1 && arr[ir] < arr[l]) {
|
|
SWAP(arr[l],arr[ir])
|
|
ISWAP(iarr[l],iarr[ir])
|
|
}
|
|
return;
|
|
} else {
|
|
mid=(l+ir) >> 1;
|
|
SWAP(arr[mid],arr[l+1])
|
|
ISWAP(iarr[mid],iarr[l+1])
|
|
if (arr[l] > arr[ir]) {
|
|
SWAP(arr[l],arr[ir])
|
|
ISWAP(iarr[l],iarr[ir])
|
|
}
|
|
if (arr[l+1] > arr[ir]) {
|
|
SWAP(arr[l+1],arr[ir])
|
|
ISWAP(iarr[l+1],iarr[ir])
|
|
}
|
|
if (arr[l] > arr[l+1]) {
|
|
SWAP(arr[l],arr[l+1])
|
|
ISWAP(iarr[l],iarr[l+1])
|
|
}
|
|
i = l+1;
|
|
j = ir;
|
|
a = arr[l+1];
|
|
ia = iarr[l+1];
|
|
for (;;) {
|
|
do i++; while (arr[i] < a);
|
|
do j--; while (arr[j] > a);
|
|
if (j < i) break;
|
|
SWAP(arr[i],arr[j])
|
|
ISWAP(iarr[i],iarr[j])
|
|
}
|
|
arr[l+1] = arr[j];
|
|
arr[j] = a;
|
|
iarr[l+1] = iarr[j];
|
|
iarr[j] = ia;
|
|
if (j >= k) ir = j-1;
|
|
if (j <= k) l = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
memory usage of local atom-based array
|
|
------------------------------------------------------------------------- */
|
|
|
|
double ComputeAcklandAtom::memory_usage()
|
|
{
|
|
double bytes = nmax * sizeof(double);
|
|
return bytes;
|
|
}
|