Files
lammps/examples/mliap/jax/write_unified.py
2023-05-20 14:08:20 -06:00

87 lines
2.7 KiB
Python

"""
interface for creating LAMMPS MLIAP Unified models.
"""
import pickle
import numpy as np
from lammps.mliap.mliap_unified_abc import MLIAPUnified
#from deploy_script import MyModel
class MLIAPInterface(MLIAPUnified):
"""
Class for creating ML-IAP Unified model based on hippynn graphs.
"""
def __init__(self, model, element_types, cutoff=4.5, ndescriptors=1):
"""
:param model: class defining the model
:param element_types: list of atomic symbols corresponding to element types
:param ndescriptors: the number of descriptors to report to LAMMPS
:param model_device: the device to send torch data to (cpu or cuda)
"""
super().__init__()
self.model = model
self.element_types = element_types
self.ndescriptors = ndescriptors
#self.model_device = model_device
# Build the calculator
# TODO: Make this cutoff depend on model cutoff, ideally from deployed model itself but could
# be part of deploy step.
#rc = 4.5
self.rcutfac = 0.5*cutoff # Actual cutoff will be 2*rc
#print(self.model.nparams)
self.nparams = 10
#self.rcutfac, self.species_set, self.graph = setup_LAMMPS()
#self.nparams = sum(p.nelement() for p in self.graph.parameters())
#self.graph.to(torch.float64)
def compute_descriptors(self, data):
pass
def compute_gradients(self, data):
pass
def compute_forces(self, data):
#print(">>>>> hey!")
#elems = self.as_tensor(data.elems).type(torch.int64).reshape(1, data.ntotal)
"""
elems = self.as_tensor(data.elems).type(torch.int64) + 1
#z_vals = self.species_set[elems+1]
pair_i = self.as_tensor(data.pair_i).type(torch.int64)
pair_j = self.as_tensor(data.pair_j).type(torch.int64)
rij = self.as_tensor(data.rij).type(torch.float64).requires_grad_(True)
nlocal = self.as_tensor(data.nlistatoms)
"""
rij = data.rij
#(total_energy, fij) = self.network(rij, None, None, None, nlocal, elems, pair_i, pair_j, "cpu", dtype=torch.float64, mode="lammps")
test = self.model(rij)
#data.update_pair_forces(fij)
#data.energy = total_energy.item()
pass
def setup_LAMMPS(energy):
"""
:param energy: energy node for lammps interface
:return: graph for computing from lammps MLIAP unified inputs.
"""
model = TheModelClass(*args, **kwargs)
save_state_dict = torch.load("Ta_Pytorch.pt")
model.load_state_dict(save_state_dict["model_state_dict"])
#model.load_state_dict(torch.load(PATH))
model.eval()
#model.eval()
return model