1123 lines
36 KiB
C++
1123 lines
36 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Wengen Ouyang (Tel Aviv University)
|
|
e-mail: w.g.ouyang at gmail dot com
|
|
based on previous versions by Jaap Kroes
|
|
|
|
This is a complete version of the potential described in
|
|
[Kolmogorov & Crespi, Phys. Rev. B 71, 235415 (2005)]
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <mpi.h>
|
|
#include "pair_kolmogorov_crespi_full.h"
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "force.h"
|
|
#include "neighbor.h"
|
|
#include "neigh_list.h"
|
|
#include "neigh_request.h"
|
|
#include "my_page.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
#define MAXLINE 1024
|
|
#define DELTA 4
|
|
#define PGDELTA 1
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairKolmogorovCrespiFull::PairKolmogorovCrespiFull(LAMMPS *lmp) : Pair(lmp)
|
|
{
|
|
// initialize element to parameter maps
|
|
nelements = 0;
|
|
elements = NULL;
|
|
nparams = maxparam = 0;
|
|
params = NULL;
|
|
elem2param = NULL;
|
|
cutKCsq = NULL;
|
|
map = NULL;
|
|
|
|
nmax = 0;
|
|
maxlocal = 0;
|
|
KC_numneigh = NULL;
|
|
KC_firstneigh = NULL;
|
|
ipage = NULL;
|
|
pgsize = oneatom = 0;
|
|
|
|
normal = NULL;
|
|
dnormal = NULL;
|
|
dnormdri = NULL;
|
|
|
|
// always compute energy offset
|
|
offset_flag = 1;
|
|
|
|
// set comm size needed by this Pair
|
|
comm_forward = 39;
|
|
tap_flag = 0;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairKolmogorovCrespiFull::~PairKolmogorovCrespiFull()
|
|
{
|
|
memory->destroy(KC_numneigh);
|
|
memory->sfree(KC_firstneigh);
|
|
delete [] ipage;
|
|
memory->destroy(normal);
|
|
memory->destroy(dnormal);
|
|
memory->destroy(dnormdri);
|
|
|
|
if (allocated) {
|
|
memory->destroy(setflag);
|
|
memory->destroy(cutsq);
|
|
memory->destroy(cut);
|
|
memory->destroy(offset);
|
|
}
|
|
|
|
if (elements)
|
|
for (int i = 0; i < nelements; i++) delete [] elements[i];
|
|
delete [] elements;
|
|
memory->destroy(params);
|
|
memory->destroy(elem2param);
|
|
memory->destroy(cutKCsq);
|
|
if (allocated) delete [] map;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairKolmogorovCrespiFull::compute(int eflag, int vflag)
|
|
{
|
|
int i,j,ii,jj,inum,jnum,itype,jtype,k,l,kk,ll;
|
|
tagint itag,jtag;
|
|
double prodnorm1,prodnorm2,fkcx,fkcy,fkcz;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair,fpair1,fpair2;
|
|
double rsq,r,rhosq1,rhosq2,exp0,exp1,exp2,r2inv,r6inv,r8inv,Tap,dTap,Vkc;
|
|
double frho1,frho2,sumC1,sumC2,sumC11,sumC22,sumCff,fsum,rdsq1,rdsq2;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
int *KC_neighs_i,*KC_neighs_j;
|
|
|
|
evdwl = 0.0;
|
|
ev_init(eflag,vflag);
|
|
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
int *type = atom->type;
|
|
tagint *tag = atom->tag;
|
|
int nlocal = atom->nlocal;
|
|
int newton_pair = force->newton_pair;
|
|
double dprodnorm1[3] = {0.0, 0.0, 0.0};
|
|
double dprodnorm2[3] = {0.0, 0.0, 0.0};
|
|
double fp1[3] = {0.0, 0.0, 0.0};
|
|
double fp2[3] = {0.0, 0.0, 0.0};
|
|
double fprod1[3] = {0.0, 0.0, 0.0};
|
|
double fprod2[3] = {0.0, 0.0, 0.0};
|
|
double fk[3] = {0.0, 0.0, 0.0};
|
|
double fl[3] = {0.0, 0.0, 0.0};
|
|
double delkj[3] = {0.0, 0.0, 0.0};
|
|
double delli[3] = {0.0, 0.0, 0.0};
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
// Build full neighbor list
|
|
KC_neigh();
|
|
// Calculate the normals
|
|
calc_normal();
|
|
|
|
// communicate the normal vector and its derivatives
|
|
comm->forward_comm_pair(this);
|
|
|
|
// loop over neighbors of my atoms
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
itag = tag[i];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
jtype = type[j];
|
|
jtag = tag[j];
|
|
|
|
// two-body interactions from full neighbor list, skip half of them
|
|
if (itag > jtag) {
|
|
if ((itag+jtag) % 2 == 0) continue;
|
|
} else if (itag < jtag) {
|
|
if ((itag+jtag) % 2 == 1) continue;
|
|
} else {
|
|
if (x[j][2] < ztmp) continue;
|
|
if (x[j][2] == ztmp && x[j][1] < ytmp) continue;
|
|
if (x[j][2] == ztmp && x[j][1] == ytmp && x[j][0] < xtmp) continue;
|
|
}
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
|
|
// only include the interation between different layers
|
|
if (rsq < cutsq[itype][jtype] && atom->molecule[i] != atom->molecule[j]) {
|
|
|
|
int iparam_ij = elem2param[map[itype]][map[jtype]];
|
|
Param& p = params[iparam_ij];
|
|
|
|
r = sqrt(rsq);
|
|
r2inv = 1.0/rsq;
|
|
r6inv = r2inv*r2inv*r2inv;
|
|
r8inv = r2inv*r6inv;
|
|
// turn on/off taper function
|
|
if (tap_flag) {
|
|
Tap = calc_Tap(r,sqrt(cutsq[itype][jtype]));
|
|
dTap = calc_dTap(r,sqrt(cutsq[itype][jtype]));
|
|
} else {Tap = 1.0; dTap = 0.0;}
|
|
|
|
// Calculate the transverse distance
|
|
// note that rho_ij does not equal to rho_ji except when normals are all along z
|
|
prodnorm1 = normal[i][0]*delx + normal[i][1]*dely + normal[i][2]*delz;
|
|
prodnorm2 = normal[j][0]*delx + normal[j][1]*dely + normal[j][2]*delz;
|
|
rhosq1 = rsq - prodnorm1*prodnorm1; // rho_ij
|
|
rhosq2 = rsq - prodnorm2*prodnorm2; // rho_ji
|
|
rdsq1 = rhosq1*p.delta2inv; // (rho_ij/delta)^2
|
|
rdsq2 = rhosq2*p.delta2inv; // (rho_ji/delta)^2
|
|
|
|
// store exponents
|
|
exp0 = exp(-p.lambda*(r-p.z0));
|
|
exp1 = exp(-rdsq1);
|
|
exp2 = exp(-rdsq2);
|
|
|
|
sumC1 = p.C0 + p.C2*rdsq1 + p.C4*rdsq1*rdsq1;
|
|
sumC2 = p.C0 + p.C2*rdsq2 + p.C4*rdsq2*rdsq2;
|
|
sumC11 = (p.C2 + 2.0*p.C4*rdsq1)*p.delta2inv;
|
|
sumC22 = (p.C2 + 2.0*p.C4*rdsq2)*p.delta2inv;
|
|
frho1 = exp1*sumC1;
|
|
frho2 = exp2*sumC2;
|
|
sumCff = p.C + frho1 + frho2;
|
|
Vkc = -p.A*p.z06*r6inv + exp0*sumCff;
|
|
|
|
// derivatives
|
|
fpair = -6.0*p.A*p.z06*r8inv + p.lambda*exp0/r*sumCff;
|
|
fpair1 = 2.0*exp0*exp1*(p.delta2inv*sumC1 - sumC11);
|
|
fpair2 = 2.0*exp0*exp2*(p.delta2inv*sumC2 - sumC22);
|
|
fsum = fpair + fpair1 + fpair2;
|
|
// derivatives of the product of rij and ni, the result is a vector
|
|
dprodnorm1[0] = dnormdri[0][0][i]*delx + dnormdri[1][0][i]*dely + dnormdri[2][0][i]*delz;
|
|
dprodnorm1[1] = dnormdri[0][1][i]*delx + dnormdri[1][1][i]*dely + dnormdri[2][1][i]*delz;
|
|
dprodnorm1[2] = dnormdri[0][2][i]*delx + dnormdri[1][2][i]*dely + dnormdri[2][2][i]*delz;
|
|
// derivatives of the product of rji and nj, the result is a vector
|
|
dprodnorm2[0] = dnormdri[0][0][j]*delx + dnormdri[1][0][j]*dely + dnormdri[2][0][j]*delz;
|
|
dprodnorm2[1] = dnormdri[0][1][j]*delx + dnormdri[1][1][j]*dely + dnormdri[2][1][j]*delz;
|
|
dprodnorm2[2] = dnormdri[0][2][j]*delx + dnormdri[1][2][j]*dely + dnormdri[2][2][j]*delz;
|
|
fp1[0] = prodnorm1*normal[i][0]*fpair1;
|
|
fp1[1] = prodnorm1*normal[i][1]*fpair1;
|
|
fp1[2] = prodnorm1*normal[i][2]*fpair1;
|
|
fp2[0] = prodnorm2*normal[j][0]*fpair2;
|
|
fp2[1] = prodnorm2*normal[j][1]*fpair2;
|
|
fp2[2] = prodnorm2*normal[j][2]*fpair2;
|
|
fprod1[0] = prodnorm1*dprodnorm1[0]*fpair1;
|
|
fprod1[1] = prodnorm1*dprodnorm1[1]*fpair1;
|
|
fprod1[2] = prodnorm1*dprodnorm1[2]*fpair1;
|
|
fprod2[0] = prodnorm2*dprodnorm2[0]*fpair2;
|
|
fprod2[1] = prodnorm2*dprodnorm2[1]*fpair2;
|
|
fprod2[2] = prodnorm2*dprodnorm2[2]*fpair2;
|
|
fkcx = (delx*fsum - fp1[0] - fp2[0])*Tap - Vkc*dTap*delx/r;
|
|
fkcy = (dely*fsum - fp1[1] - fp2[1])*Tap - Vkc*dTap*dely/r;
|
|
fkcz = (delz*fsum - fp1[2] - fp2[2])*Tap - Vkc*dTap*delz/r;
|
|
|
|
f[i][0] += fkcx - fprod1[0]*Tap;
|
|
f[i][1] += fkcy - fprod1[1]*Tap;
|
|
f[i][2] += fkcz - fprod1[2]*Tap;
|
|
f[j][0] -= fkcx + fprod2[0]*Tap;
|
|
f[j][1] -= fkcy + fprod2[1]*Tap;
|
|
f[j][2] -= fkcz + fprod2[2]*Tap;
|
|
|
|
// calculate the forces acted on the neighbors of atom i from atom j
|
|
KC_neighs_i = KC_firstneigh[i];
|
|
for (kk = 0; kk < KC_numneigh[i]; kk++) {
|
|
k = KC_neighs_i[kk];
|
|
if (k == i) continue;
|
|
// derivatives of the product of rij and ni respect to rk, k=0,1,2, where atom k is the neighbors of atom i
|
|
dprodnorm1[0] = dnormal[0][0][kk][i]*delx + dnormal[1][0][kk][i]*dely + dnormal[2][0][kk][i]*delz;
|
|
dprodnorm1[1] = dnormal[0][1][kk][i]*delx + dnormal[1][1][kk][i]*dely + dnormal[2][1][kk][i]*delz;
|
|
dprodnorm1[2] = dnormal[0][2][kk][i]*delx + dnormal[1][2][kk][i]*dely + dnormal[2][2][kk][i]*delz;
|
|
fk[0] = (-prodnorm1*dprodnorm1[0]*fpair1)*Tap;
|
|
fk[1] = (-prodnorm1*dprodnorm1[1]*fpair1)*Tap;
|
|
fk[2] = (-prodnorm1*dprodnorm1[2]*fpair1)*Tap;
|
|
f[k][0] += fk[0];
|
|
f[k][1] += fk[1];
|
|
f[k][2] += fk[2];
|
|
delkj[0] = x[k][0] - x[j][0];
|
|
delkj[1] = x[k][1] - x[j][1];
|
|
delkj[2] = x[k][2] - x[j][2];
|
|
if (evflag) ev_tally_xyz(k,j,nlocal,newton_pair,0.0,0.0,fk[0],fk[1],fk[2],delkj[0],delkj[1],delkj[2]);
|
|
}
|
|
|
|
// calculate the forces acted on the neighbors of atom j from atom i
|
|
KC_neighs_j = KC_firstneigh[j];
|
|
for (ll = 0; ll < KC_numneigh[j]; ll++) {
|
|
l = KC_neighs_j[ll];
|
|
if (l == j) continue;
|
|
// derivatives of the product of rji and nj respect to rl, l=0,1,2, where atom l is the neighbors of atom j
|
|
dprodnorm2[0] = dnormal[0][0][ll][j]*delx + dnormal[1][0][ll][j]*dely + dnormal[2][0][ll][j]*delz;
|
|
dprodnorm2[1] = dnormal[0][1][ll][j]*delx + dnormal[1][1][ll][j]*dely + dnormal[2][1][ll][j]*delz;
|
|
dprodnorm2[2] = dnormal[0][2][ll][j]*delx + dnormal[1][2][ll][j]*dely + dnormal[2][2][ll][j]*delz;
|
|
fl[0] = (-prodnorm2*dprodnorm2[0]*fpair2)*Tap;
|
|
fl[1] = (-prodnorm2*dprodnorm2[1]*fpair2)*Tap;
|
|
fl[2] = (-prodnorm2*dprodnorm2[2]*fpair2)*Tap;
|
|
f[l][0] += fl[0];
|
|
f[l][1] += fl[1];
|
|
f[l][2] += fl[2];
|
|
delli[0] = x[l][0] - x[i][0];
|
|
delli[1] = x[l][1] - x[i][1];
|
|
delli[2] = x[l][2] - x[i][2];
|
|
if (evflag) ev_tally_xyz(l,i,nlocal,newton_pair,0.0,0.0,fl[0],fl[1],fl[2],delli[0],delli[1],delli[2]);
|
|
}
|
|
|
|
if (eflag) {
|
|
if (tap_flag) evdwl = Tap*Vkc;
|
|
else evdwl = Vkc - offset[itype][jtype];
|
|
}
|
|
|
|
if (evflag) ev_tally_xyz(i,j,nlocal,newton_pair,evdwl,0,fkcx,fkcy,fkcz,delx,dely,delz);
|
|
}
|
|
}
|
|
}
|
|
if (vflag_fdotr) virial_fdotr_compute();
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Calculate the normals for each atom
|
|
------------------------------------------------------------------------- */
|
|
void PairKolmogorovCrespiFull::calc_normal()
|
|
{
|
|
int i,j,ii,jj,inum,jnum;
|
|
int cont,id,ip,m;
|
|
double nn,xtp,ytp,ztp,delx,dely,delz,nn2;
|
|
int *ilist,*jlist;
|
|
double pv12[3],pv31[3],pv23[3],n1[3],dni[3],dnn[3][3],vet[3][3],dpvdri[3][3];
|
|
double dn1[3][3][3],dpv12[3][3][3],dpv23[3][3][3],dpv31[3][3][3];
|
|
|
|
double **x = atom->x;
|
|
|
|
// grow normal array if necessary
|
|
|
|
if (atom->nmax > nmax) {
|
|
memory->destroy(normal);
|
|
memory->destroy(dnormal);
|
|
memory->destroy(dnormdri);
|
|
nmax = atom->nmax;
|
|
memory->create(normal,nmax,3,"KolmogorovCrespiFull:normal");
|
|
memory->create(dnormdri,3,3,nmax,"KolmogorovCrespiFull:dnormdri");
|
|
memory->create(dnormal,3,3,3,nmax,"KolmogorovCrespiFull:dnormal");
|
|
}
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
//Calculate normals
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
xtp = x[i][0];
|
|
ytp = x[i][1];
|
|
ztp = x[i][2];
|
|
|
|
// Initialize the arrays
|
|
for (id = 0; id < 3; id++){
|
|
pv12[id] = 0.0;
|
|
pv31[id] = 0.0;
|
|
pv23[id] = 0.0;
|
|
n1[id] = 0.0;
|
|
dni[id] = 0.0;
|
|
normal[i][id] = 0.0;
|
|
for (ip = 0; ip < 3; ip++){
|
|
vet[ip][id] = 0.0;
|
|
dnn[ip][id] = 0.0;
|
|
dpvdri[ip][id] = 0.0;
|
|
dnormdri[ip][id][i] = 0.0;
|
|
for (m = 0; m < 3; m++){
|
|
dpv12[ip][id][m] = 0.0;
|
|
dpv31[ip][id][m] = 0.0;
|
|
dpv23[ip][id][m] = 0.0;
|
|
dn1[ip][id][m] = 0.0;
|
|
dnormal[ip][id][m][i] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
cont = 0;
|
|
jlist = KC_firstneigh[i];
|
|
jnum = KC_numneigh[i];
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = x[j][0] - xtp;
|
|
dely = x[j][1] - ytp;
|
|
delz = x[j][2] - ztp;
|
|
vet[cont][0] = delx;
|
|
vet[cont][1] = dely;
|
|
vet[cont][2] = delz;
|
|
cont++;
|
|
}
|
|
|
|
if (cont <= 1) {
|
|
normal[i][0] = 0.0;
|
|
normal[i][1] = 0.0;
|
|
normal[i][2] = 1.0;
|
|
// derivatives of normal vector is zero
|
|
for (id = 0; id < 3; id++){
|
|
for (ip = 0; ip < 3; ip++){
|
|
dnormdri[id][ip][i] = 0.0;
|
|
for (m = 0; m < 3; m++){
|
|
dnormal[id][ip][m][i] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (cont == 2) {
|
|
// for the atoms at the edge who has only two neighbor atoms
|
|
pv12[0] = vet[0][1]*vet[1][2] - vet[1][1]*vet[0][2];
|
|
pv12[1] = vet[0][2]*vet[1][0] - vet[1][2]*vet[0][0];
|
|
pv12[2] = vet[0][0]*vet[1][1] - vet[1][0]*vet[0][1];
|
|
dpvdri[0][0] = 0.0;
|
|
dpvdri[0][1] = vet[0][2]-vet[1][2];
|
|
dpvdri[0][2] = vet[1][1]-vet[0][1];
|
|
dpvdri[1][0] = vet[1][2]-vet[0][2];
|
|
dpvdri[1][1] = 0.0;
|
|
dpvdri[1][2] = vet[0][0]-vet[1][0];
|
|
dpvdri[2][0] = vet[0][1]-vet[1][1];
|
|
dpvdri[2][1] = vet[1][0]-vet[0][0];
|
|
dpvdri[2][2] = 0.0;
|
|
|
|
// derivatives respect to the first neighbor, atom k
|
|
dpv12[0][0][0] = 0.0;
|
|
dpv12[0][1][0] = vet[1][2];
|
|
dpv12[0][2][0] = -vet[1][1];
|
|
dpv12[1][0][0] = -vet[1][2];
|
|
dpv12[1][1][0] = 0.0;
|
|
dpv12[1][2][0] = vet[1][0];
|
|
dpv12[2][0][0] = vet[1][1];
|
|
dpv12[2][1][0] = -vet[1][0];
|
|
dpv12[2][2][0] = 0.0;
|
|
|
|
// derivatives respect to the second neighbor, atom l
|
|
dpv12[0][0][1] = 0.0;
|
|
dpv12[0][1][1] = -vet[0][2];
|
|
dpv12[0][2][1] = vet[0][1];
|
|
dpv12[1][0][1] = vet[0][2];
|
|
dpv12[1][1][1] = 0.0;
|
|
dpv12[1][2][1] = -vet[0][0];
|
|
dpv12[2][0][1] = -vet[0][1];
|
|
dpv12[2][1][1] = vet[0][0];
|
|
dpv12[2][2][1] = 0.0;
|
|
|
|
// derivatives respect to the third neighbor, atom n
|
|
for (id = 0; id < 3; id++){
|
|
for (ip = 0; ip < 3; ip++){
|
|
dpv12[id][ip][2] = 0.0;
|
|
}
|
|
}
|
|
|
|
n1[0] = pv12[0];
|
|
n1[1] = pv12[1];
|
|
n1[2] = pv12[2];
|
|
// the magnitude of the normal vector
|
|
nn2 = n1[0]*n1[0] + n1[1]*n1[1] + n1[2]*n1[2];
|
|
nn = sqrt(nn2);
|
|
if (nn == 0) error->one(FLERR,"The magnitude of the normal vector is zero");
|
|
// the unit normal vector
|
|
normal[i][0] = n1[0]/nn;
|
|
normal[i][1] = n1[1]/nn;
|
|
normal[i][2] = n1[2]/nn;
|
|
// derivatives of nn, dnn:3x1 vector
|
|
dni[0] = (n1[0]*dpvdri[0][0] + n1[1]*dpvdri[1][0] + n1[2]*dpvdri[2][0])/nn;
|
|
dni[1] = (n1[0]*dpvdri[0][1] + n1[1]*dpvdri[1][1] + n1[2]*dpvdri[2][1])/nn;
|
|
dni[2] = (n1[0]*dpvdri[0][2] + n1[1]*dpvdri[1][2] + n1[2]*dpvdri[2][2])/nn;
|
|
// derivatives of unit vector ni respect to ri, the result is 3x3 matrix
|
|
for (id = 0; id < 3; id++){
|
|
for (ip = 0; ip < 3; ip++){
|
|
dnormdri[id][ip][i] = dpvdri[id][ip]/nn - n1[id]*dni[ip]/nn2;
|
|
}
|
|
}
|
|
|
|
// derivatives of non-normalized normal vector, dn1:3x3x3 array
|
|
for (id = 0; id < 3; id++){
|
|
for (ip = 0; ip < 3; ip++){
|
|
for (m = 0; m < 3; m++){
|
|
dn1[id][ip][m] = dpv12[id][ip][m];
|
|
}
|
|
}
|
|
}
|
|
// derivatives of nn, dnn:3x3 vector
|
|
// dnn[id][m]: the derivative of nn respect to r[id][m], id,m=0,1,2
|
|
// r[id][m]: the id's component of atom m
|
|
for (m = 0; m < 3; m++){
|
|
for (id = 0; id < 3; id++){
|
|
dnn[id][m] = (n1[0]*dn1[0][id][m] + n1[1]*dn1[1][id][m] + n1[2]*dn1[2][id][m])/nn;
|
|
}
|
|
}
|
|
// dnormal[id][ip][m][i]: the derivative of normal[id] respect to r[ip][m], id,ip=0,1,2
|
|
// for atom m, which is a neighbor atom of atom i, m=0,jnum-1
|
|
for (m = 0; m < 3; m++){
|
|
for (id = 0; id < 3; id++){
|
|
for (ip = 0; ip < 3; ip++){
|
|
dnormal[id][ip][m][i] = dn1[id][ip][m]/nn - n1[id]*dnn[ip][m]/nn2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
//##############################################################################################
|
|
|
|
else if(cont == 3) {
|
|
// for the atoms at the edge who has only two neighbor atoms
|
|
pv12[0] = vet[0][1]*vet[1][2] - vet[1][1]*vet[0][2];
|
|
pv12[1] = vet[0][2]*vet[1][0] - vet[1][2]*vet[0][0];
|
|
pv12[2] = vet[0][0]*vet[1][1] - vet[1][0]*vet[0][1];
|
|
// derivatives respect to the first neighbor, atom k
|
|
dpv12[0][0][0] = 0.0;
|
|
dpv12[0][1][0] = vet[1][2];
|
|
dpv12[0][2][0] = -vet[1][1];
|
|
dpv12[1][0][0] = -vet[1][2];
|
|
dpv12[1][1][0] = 0.0;
|
|
dpv12[1][2][0] = vet[1][0];
|
|
dpv12[2][0][0] = vet[1][1];
|
|
dpv12[2][1][0] = -vet[1][0];
|
|
dpv12[2][2][0] = 0.0;
|
|
// derivatives respect to the second neighbor, atom l
|
|
dpv12[0][0][1] = 0.0;
|
|
dpv12[0][1][1] = -vet[0][2];
|
|
dpv12[0][2][1] = vet[0][1];
|
|
dpv12[1][0][1] = vet[0][2];
|
|
dpv12[1][1][1] = 0.0;
|
|
dpv12[1][2][1] = -vet[0][0];
|
|
dpv12[2][0][1] = -vet[0][1];
|
|
dpv12[2][1][1] = vet[0][0];
|
|
dpv12[2][2][1] = 0.0;
|
|
|
|
// derivatives respect to the third neighbor, atom n
|
|
for (id = 0; id < 3; id++){
|
|
for (ip = 0; ip < 3; ip++){
|
|
dpv12[id][ip][2] = 0.0;
|
|
}
|
|
}
|
|
|
|
pv31[0] = vet[2][1]*vet[0][2] - vet[0][1]*vet[2][2];
|
|
pv31[1] = vet[2][2]*vet[0][0] - vet[0][2]*vet[2][0];
|
|
pv31[2] = vet[2][0]*vet[0][1] - vet[0][0]*vet[2][1];
|
|
// derivatives respect to the first neighbor, atom k
|
|
dpv31[0][0][0] = 0.0;
|
|
dpv31[0][1][0] = -vet[2][2];
|
|
dpv31[0][2][0] = vet[2][1];
|
|
dpv31[1][0][0] = vet[2][2];
|
|
dpv31[1][1][0] = 0.0;
|
|
dpv31[1][2][0] = -vet[2][0];
|
|
dpv31[2][0][0] = -vet[2][1];
|
|
dpv31[2][1][0] = vet[2][0];
|
|
dpv31[2][2][0] = 0.0;
|
|
// derivatives respect to the third neighbor, atom n
|
|
dpv31[0][0][2] = 0.0;
|
|
dpv31[0][1][2] = vet[0][2];
|
|
dpv31[0][2][2] = -vet[0][1];
|
|
// derivatives of pv13[1] to rn
|
|
dpv31[1][0][2] = -vet[0][2];
|
|
dpv31[1][1][2] = 0.0;
|
|
dpv31[1][2][2] = vet[0][0];
|
|
// derivatives of pv13[2] to rn
|
|
dpv31[2][0][2] = vet[0][1];
|
|
dpv31[2][1][2] = -vet[0][0];
|
|
dpv31[2][2][2] = 0.0;
|
|
|
|
// derivatives respect to the second neighbor, atom l
|
|
for (id = 0; id < 3; id++){
|
|
for (ip = 0; ip < 3; ip++){
|
|
dpv31[id][ip][1] = 0.0;
|
|
}
|
|
}
|
|
|
|
pv23[0] = vet[1][1]*vet[2][2] - vet[2][1]*vet[1][2];
|
|
pv23[1] = vet[1][2]*vet[2][0] - vet[2][2]*vet[1][0];
|
|
pv23[2] = vet[1][0]*vet[2][1] - vet[2][0]*vet[1][1];
|
|
// derivatives respect to the second neighbor, atom k
|
|
for (id = 0; id < 3; id++){
|
|
for (ip = 0; ip < 3; ip++){
|
|
dpv23[id][ip][0] = 0.0;
|
|
}
|
|
}
|
|
// derivatives respect to the second neighbor, atom l
|
|
dpv23[0][0][1] = 0.0;
|
|
dpv23[0][1][1] = vet[2][2];
|
|
dpv23[0][2][1] = -vet[2][1];
|
|
dpv23[1][0][1] = -vet[2][2];
|
|
dpv23[1][1][1] = 0.0;
|
|
dpv23[1][2][1] = vet[2][0];
|
|
dpv23[2][0][1] = vet[2][1];
|
|
dpv23[2][1][1] = -vet[2][0];
|
|
dpv23[2][2][1] = 0.0;
|
|
// derivatives respect to the third neighbor, atom n
|
|
dpv23[0][0][2] = 0.0;
|
|
dpv23[0][1][2] = -vet[1][2];
|
|
dpv23[0][2][2] = vet[1][1];
|
|
dpv23[1][0][2] = vet[1][2];
|
|
dpv23[1][1][2] = 0.0;
|
|
dpv23[1][2][2] = -vet[1][0];
|
|
dpv23[2][0][2] = -vet[1][1];
|
|
dpv23[2][1][2] = vet[1][0];
|
|
dpv23[2][2][2] = 0.0;
|
|
|
|
//############################################################################################
|
|
// average the normal vectors by using the 3 neighboring planes
|
|
n1[0] = (pv12[0] + pv31[0] + pv23[0])/cont;
|
|
n1[1] = (pv12[1] + pv31[1] + pv23[1])/cont;
|
|
n1[2] = (pv12[2] + pv31[2] + pv23[2])/cont;
|
|
// the magnitude of the normal vector
|
|
nn2 = n1[0]*n1[0] + n1[1]*n1[1] + n1[2]*n1[2];
|
|
nn = sqrt(nn2);
|
|
if (nn == 0) error->one(FLERR,"The magnitude of the normal vector is zero");
|
|
// the unit normal vector
|
|
normal[i][0] = n1[0]/nn;
|
|
normal[i][1] = n1[1]/nn;
|
|
normal[i][2] = n1[2]/nn;
|
|
|
|
// for the central atoms, dnormdri is always zero
|
|
for (id = 0; id < 3; id++){
|
|
for (ip = 0; ip < 3; ip++){
|
|
dnormdri[id][ip][i] = 0.0;
|
|
}
|
|
} // end of derivatives of normals respect to atom i
|
|
|
|
// derivatives of non-normalized normal vector, dn1:3x3x3 array
|
|
for (id = 0; id < 3; id++){
|
|
for (ip = 0; ip < 3; ip++){
|
|
for (m = 0; m < 3; m++){
|
|
dn1[id][ip][m] = (dpv12[id][ip][m] + dpv23[id][ip][m] + dpv31[id][ip][m])/cont;
|
|
}
|
|
}
|
|
}
|
|
// derivatives of nn, dnn:3x3 vector
|
|
// dnn[id][m]: the derivative of nn respect to r[id][m], id,m=0,1,2
|
|
// r[id][m]: the id's component of atom m
|
|
for (m = 0; m < 3; m++){
|
|
for (id = 0; id < 3; id++){
|
|
dnn[id][m] = (n1[0]*dn1[0][id][m] + n1[1]*dn1[1][id][m] + n1[2]*dn1[2][id][m])/nn;
|
|
}
|
|
}
|
|
// dnormal[id][ip][m][i]: the derivative of normal[id] respect to r[ip][m], id,ip=0,1,2
|
|
// for atom m, which is a neighbor atom of atom i, m=0,jnum-1
|
|
for (m = 0; m < 3; m++){
|
|
for (id = 0; id < 3; id++){
|
|
for (ip = 0; ip < 3; ip++){
|
|
dnormal[id][ip][m][i] = dn1[id][ip][m]/nn - n1[id]*dnn[ip][m]/nn2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
error->one(FLERR,"There are too many neighbors for calculating normals");
|
|
}
|
|
|
|
//##############################################################################################
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
init specific to this pair style
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairKolmogorovCrespiFull::init_style()
|
|
{
|
|
if (force->newton_pair == 0)
|
|
error->all(FLERR,"Pair style kolmolgorov/crespi/full requires newton pair on");
|
|
if (!atom->molecule_flag)
|
|
error->all(FLERR,"Pair style kolmolgorov/crespi/full requires atom attribute molecule");
|
|
|
|
// need a full neighbor list, including neighbors of ghosts
|
|
|
|
int irequest = neighbor->request(this,instance_me);
|
|
neighbor->requests[irequest]->half = 0;
|
|
neighbor->requests[irequest]->full = 1;
|
|
neighbor->requests[irequest]->ghost = 1;
|
|
|
|
// local KC neighbor list
|
|
// create pages if first time or if neighbor pgsize/oneatom has changed
|
|
|
|
int create = 0;
|
|
if (ipage == NULL) create = 1;
|
|
if (pgsize != neighbor->pgsize) create = 1;
|
|
if (oneatom != neighbor->oneatom) create = 1;
|
|
|
|
if (create) {
|
|
delete [] ipage;
|
|
pgsize = neighbor->pgsize;
|
|
oneatom = neighbor->oneatom;
|
|
|
|
int nmypage= comm->nthreads;
|
|
ipage = new MyPage<int>[nmypage];
|
|
for (int i = 0; i < nmypage; i++)
|
|
ipage[i].init(oneatom,pgsize,PGDELTA);
|
|
}
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
create neighbor list from main neighbor list for calculating the normals
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairKolmogorovCrespiFull::KC_neigh()
|
|
{
|
|
int i,j,ii,jj,n,allnum,jnum,itype,jtype;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz,rsq;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
int *neighptr;
|
|
|
|
double **x = atom->x;
|
|
int *type = atom->type;
|
|
|
|
if (atom->nmax > maxlocal) {
|
|
maxlocal = atom->nmax;
|
|
memory->destroy(KC_numneigh);
|
|
memory->sfree(KC_firstneigh);
|
|
memory->create(KC_numneigh,maxlocal,"KolmogorovCrespiFull:numneigh");
|
|
KC_firstneigh = (int **) memory->smalloc(maxlocal*sizeof(int *),
|
|
"KolmogorovCrespiFull:firstneigh");
|
|
}
|
|
|
|
allnum = list->inum + list->gnum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// store all KC neighs of owned and ghost atoms
|
|
// scan full neighbor list of I
|
|
|
|
ipage->reset();
|
|
|
|
for (ii = 0; ii < allnum; ii++) {
|
|
i = ilist[ii];
|
|
|
|
n = 0;
|
|
neighptr = ipage->vget();
|
|
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = map[type[i]];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
jtype = map[type[j]];
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
|
|
if (rsq != 0 && rsq < cutKCsq[itype][jtype] && atom->molecule[i] == atom->molecule[j]) {
|
|
neighptr[n++] = j;
|
|
}
|
|
}
|
|
|
|
KC_firstneigh[i] = neighptr;
|
|
KC_numneigh[i] = n;
|
|
if (n > 3) error->one(FLERR,"There are too many neighbors for some atoms, please check your configuration");
|
|
ipage->vgot(n);
|
|
if (ipage->status())
|
|
error->one(FLERR,"Neighbor list overflow, boost neigh_modify one");
|
|
}
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
allocate all arrays
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairKolmogorovCrespiFull::allocate()
|
|
{
|
|
allocated = 1;
|
|
int n = atom->ntypes;
|
|
|
|
memory->create(setflag,n+1,n+1,"pair:setflag");
|
|
for (int i = 1; i <= n; i++)
|
|
for (int j = i; j <= n; j++)
|
|
setflag[i][j] = 0;
|
|
|
|
memory->create(cutsq,n+1,n+1,"pair:cutsq");
|
|
memory->create(cut,n+1,n+1,"pair:cut");
|
|
memory->create(offset,n+1,n+1,"pair:offset");
|
|
map = new int[atom->ntypes+1];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
global settings
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairKolmogorovCrespiFull::settings(int narg, char **arg)
|
|
{
|
|
if (narg < 1 || narg > 2) error->all(FLERR,"Illegal pair_style command");
|
|
if (strcmp(force->pair_style,"hybrid/overlay")!=0)
|
|
error->all(FLERR,"ERROR: requires hybrid/overlay pair_style");
|
|
|
|
cut_global = force->numeric(FLERR,arg[0]);
|
|
if (narg == 2) tap_flag = force->numeric(FLERR,arg[1]);
|
|
|
|
// reset cutoffs that have been explicitly set
|
|
|
|
if (allocated) {
|
|
int i,j;
|
|
for (i = 1; i <= atom->ntypes; i++)
|
|
for (j = i; j <= atom->ntypes; j++)
|
|
if (setflag[i][j]) cut[i][j] = cut_global;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set coeffs for one or more type pairs
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairKolmogorovCrespiFull::coeff(int narg, char **arg)
|
|
{
|
|
int i,j,n;
|
|
|
|
if (narg != 3 + atom->ntypes)
|
|
error->all(FLERR,"Incorrect args for pair coefficients");
|
|
if (!allocated) allocate();
|
|
|
|
int ilo,ihi,jlo,jhi;
|
|
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
|
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
|
|
|
// read args that map atom types to elements in potential file
|
|
// map[i] = which element the Ith atom type is, -1 if NULL
|
|
// nelements = # of unique elements
|
|
// elements = list of element names
|
|
|
|
if (elements) {
|
|
for (i = 0; i < nelements; i++) delete [] elements[i];
|
|
delete [] elements;
|
|
}
|
|
elements = new char*[atom->ntypes];
|
|
for (i = 0; i < atom->ntypes; i++) elements[i] = NULL;
|
|
|
|
nelements = 0;
|
|
for (i = 3; i < narg; i++) {
|
|
if (strcmp(arg[i],"NULL") == 0) {
|
|
map[i-2] = -1;
|
|
continue;
|
|
}
|
|
for (j = 0; j < nelements; j++)
|
|
if (strcmp(arg[i],elements[j]) == 0) break;
|
|
map[i-2] = j;
|
|
if (j == nelements) {
|
|
n = strlen(arg[i]) + 1;
|
|
elements[j] = new char[n];
|
|
strcpy(elements[j],arg[i]);
|
|
nelements++;
|
|
}
|
|
}
|
|
|
|
|
|
read_file(arg[2]);
|
|
|
|
double cut_one = cut_global;
|
|
|
|
int count = 0;
|
|
for (int i = ilo; i <= ihi; i++) {
|
|
for (int j = MAX(jlo,i); j <= jhi; j++) {
|
|
cut[i][j] = cut_one;
|
|
setflag[i][j] = 1;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients");
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
init for one type pair i,j and corresponding j,i
|
|
------------------------------------------------------------------------- */
|
|
|
|
double PairKolmogorovCrespiFull::init_one(int i, int j)
|
|
{
|
|
if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set");
|
|
|
|
if (offset_flag && (cut[i][j] > 0.0)) {
|
|
int iparam_ij = elem2param[map[i]][map[j]];
|
|
Param& p = params[iparam_ij];
|
|
offset[i][j] = -p.A*pow(p.z0/cut[i][j],6);
|
|
} else offset[i][j] = 0.0;
|
|
offset[j][i] = offset[i][j];
|
|
|
|
return cut[i][j];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
read Kolmogorov-Crespi potential file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairKolmogorovCrespiFull::read_file(char *filename)
|
|
{
|
|
int params_per_line = 12;
|
|
char **words = new char*[params_per_line+1];
|
|
memory->sfree(params);
|
|
params = NULL;
|
|
nparams = maxparam = 0;
|
|
|
|
// open file on proc 0
|
|
|
|
FILE *fp;
|
|
if (comm->me == 0) {
|
|
fp = force->open_potential(filename);
|
|
if (fp == NULL) {
|
|
char str[128];
|
|
snprintf(str,128,"Cannot open KC potential file %s",filename);
|
|
error->one(FLERR,str);
|
|
}
|
|
}
|
|
|
|
// read each line out of file, skipping blank lines or leading '#'
|
|
// store line of params if all 3 element tags are in element list
|
|
|
|
int i,j,n,m,nwords,ielement,jelement;
|
|
char line[MAXLINE],*ptr;
|
|
int eof = 0;
|
|
|
|
while (1) {
|
|
if (comm->me == 0) {
|
|
ptr = fgets(line,MAXLINE,fp);
|
|
if (ptr == NULL) {
|
|
eof = 1;
|
|
fclose(fp);
|
|
} else n = strlen(line) + 1;
|
|
}
|
|
MPI_Bcast(&eof,1,MPI_INT,0,world);
|
|
if (eof) break;
|
|
MPI_Bcast(&n,1,MPI_INT,0,world);
|
|
MPI_Bcast(line,n,MPI_CHAR,0,world);
|
|
|
|
// strip comment, skip line if blank
|
|
|
|
if ((ptr = strchr(line,'#'))) *ptr = '\0';
|
|
nwords = atom->count_words(line);
|
|
if (nwords == 0) continue;
|
|
|
|
// concatenate additional lines until have params_per_line words
|
|
|
|
while (nwords < params_per_line) {
|
|
n = strlen(line);
|
|
if (comm->me == 0) {
|
|
ptr = fgets(&line[n],MAXLINE-n,fp);
|
|
if (ptr == NULL) {
|
|
eof = 1;
|
|
fclose(fp);
|
|
} else n = strlen(line) + 1;
|
|
}
|
|
MPI_Bcast(&eof,1,MPI_INT,0,world);
|
|
if (eof) break;
|
|
MPI_Bcast(&n,1,MPI_INT,0,world);
|
|
MPI_Bcast(line,n,MPI_CHAR,0,world);
|
|
if ((ptr = strchr(line,'#'))) *ptr = '\0';
|
|
nwords = atom->count_words(line);
|
|
}
|
|
|
|
if (nwords != params_per_line)
|
|
error->all(FLERR,"Insufficient format in KC potential file");
|
|
|
|
// words = ptrs to all words in line
|
|
|
|
nwords = 0;
|
|
words[nwords++] = strtok(line," \t\n\r\f");
|
|
while ((words[nwords++] = strtok(NULL," \t\n\r\f"))) continue;
|
|
|
|
// ielement,jelement = 1st args
|
|
// if these 2 args are in element list, then parse this line
|
|
// else skip to next line (continue)
|
|
|
|
for (ielement = 0; ielement < nelements; ielement++)
|
|
if (strcmp(words[0],elements[ielement]) == 0) break;
|
|
if (ielement == nelements) continue;
|
|
for (jelement = 0; jelement < nelements; jelement++)
|
|
if (strcmp(words[1],elements[jelement]) == 0) break;
|
|
if (jelement == nelements) continue;
|
|
|
|
// load up parameter settings and error check their values
|
|
|
|
if (nparams == maxparam) {
|
|
maxparam += DELTA;
|
|
params = (Param *) memory->srealloc(params,maxparam*sizeof(Param),
|
|
"pair:params");
|
|
}
|
|
|
|
params[nparams].ielement = ielement;
|
|
params[nparams].jelement = jelement;
|
|
params[nparams].z0 = atof(words[2]);
|
|
params[nparams].C0 = atof(words[3]);
|
|
params[nparams].C2 = atof(words[4]);
|
|
params[nparams].C4 = atof(words[5]);
|
|
params[nparams].C = atof(words[6]);
|
|
params[nparams].delta = atof(words[7]);
|
|
params[nparams].lambda = atof(words[8]);
|
|
params[nparams].A = atof(words[9]);
|
|
// S provides a convenient scaling of all energies
|
|
params[nparams].S = atof(words[10]);
|
|
params[nparams].rcut = atof(words[11]);
|
|
|
|
// energies in meV further scaled by S
|
|
double meV = 1.0e-3*params[nparams].S;
|
|
params[nparams].C *= meV;
|
|
params[nparams].A *= meV;
|
|
params[nparams].C0 *= meV;
|
|
params[nparams].C2 *= meV;
|
|
params[nparams].C4 *= meV;
|
|
|
|
// precompute some quantities
|
|
params[nparams].delta2inv = pow(params[nparams].delta,-2);
|
|
params[nparams].z06 = pow(params[nparams].z0,6);
|
|
|
|
nparams++;
|
|
//if(nparams >= pow(atom->ntypes,3)) break;
|
|
}
|
|
memory->destroy(elem2param);
|
|
memory->destroy(cutKCsq);
|
|
memory->create(elem2param,nelements,nelements,"pair:elem2param");
|
|
memory->create(cutKCsq,nelements,nelements,"pair:cutKCsq");
|
|
for (i = 0; i < nelements; i++) {
|
|
for (j = 0; j < nelements; j++) {
|
|
n = -1;
|
|
for (m = 0; m < nparams; m++) {
|
|
if (i == params[m].ielement && j == params[m].jelement) {
|
|
if (n >= 0) error->all(FLERR,"Potential file has duplicate entry");
|
|
n = m;
|
|
}
|
|
}
|
|
if (n < 0) error->all(FLERR,"Potential file is missing an entry");
|
|
elem2param[i][j] = n;
|
|
cutKCsq[i][j] = params[n].rcut*params[n].rcut;
|
|
}
|
|
}
|
|
delete [] words;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double PairKolmogorovCrespiFull::single(int /*i*/, int /*j*/, int itype, int jtype, double rsq,
|
|
double /*factor_coul*/, double factor_lj,
|
|
double &fforce)
|
|
{
|
|
double r,r2inv,r6inv,r8inv,forcelj,philj;
|
|
double Tap,dTap,Vkc,fpair;
|
|
|
|
int iparam_ij = elem2param[map[itype]][map[jtype]];
|
|
Param& p = params[iparam_ij];
|
|
|
|
r = sqrt(rsq);
|
|
// turn on/off taper function
|
|
if (tap_flag) {
|
|
Tap = calc_Tap(r,sqrt(cutsq[itype][jtype]));
|
|
dTap = calc_dTap(r,sqrt(cutsq[itype][jtype]));
|
|
} else {Tap = 1.0; dTap = 0.0;}
|
|
|
|
r2inv = 1.0/rsq;
|
|
r6inv = r2inv*r2inv*r2inv;
|
|
r8inv = r2inv*r6inv;
|
|
|
|
Vkc = -p.A*p.z06*r6inv;
|
|
// derivatives
|
|
fpair = -6.0*p.A*p.z06*r8inv;
|
|
forcelj = fpair;
|
|
fforce = factor_lj*(forcelj*Tap - Vkc*dTap/r);
|
|
|
|
if (tap_flag) philj = Vkc*Tap;
|
|
else philj = Vkc - offset[itype][jtype];
|
|
return factor_lj*philj;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
int PairKolmogorovCrespiFull::pack_forward_comm(int n, int *list, double *buf,
|
|
int /*pbc_flag*/, int * /*pbc*/)
|
|
{
|
|
int i,j,m,l,ip,id;
|
|
|
|
m = 0;
|
|
for (i = 0; i < n; i++) {
|
|
j = list[i];
|
|
buf[m++] = normal[j][0];
|
|
buf[m++] = normal[j][1];
|
|
buf[m++] = normal[j][2];
|
|
buf[m++] = dnormdri[0][0][j];
|
|
buf[m++] = dnormdri[0][1][j];
|
|
buf[m++] = dnormdri[0][2][j];
|
|
buf[m++] = dnormdri[1][0][j];
|
|
buf[m++] = dnormdri[1][1][j];
|
|
buf[m++] = dnormdri[1][2][j];
|
|
buf[m++] = dnormdri[2][0][j];
|
|
buf[m++] = dnormdri[2][1][j];
|
|
buf[m++] = dnormdri[2][2][j];
|
|
for (l = 0; l < 3; l++){
|
|
for (id = 0; id < 3; id++){
|
|
for (ip = 0; ip < 3; ip++){
|
|
buf[m++] = dnormal[id][ip][l][j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return m;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairKolmogorovCrespiFull::unpack_forward_comm(int n, int first, double *buf)
|
|
{
|
|
int i,m,last,l,ip,id;
|
|
|
|
m = 0;
|
|
last = first + n;
|
|
for (i = first; i < last; i++) {
|
|
normal[i][0] = buf[m++];
|
|
normal[i][1] = buf[m++];
|
|
normal[i][2] = buf[m++];
|
|
dnormdri[0][0][i] = buf[m++];
|
|
dnormdri[0][1][i] = buf[m++];
|
|
dnormdri[0][2][i] = buf[m++];
|
|
dnormdri[1][0][i] = buf[m++];
|
|
dnormdri[1][1][i] = buf[m++];
|
|
dnormdri[1][2][i] = buf[m++];
|
|
dnormdri[2][0][i] = buf[m++];
|
|
dnormdri[2][1][i] = buf[m++];
|
|
dnormdri[2][2][i] = buf[m++];
|
|
for (l = 0; l < 3; l++){
|
|
for (id = 0; id < 3; id++){
|
|
for (ip = 0; ip < 3; ip++){
|
|
dnormal[id][ip][l][i] = buf[m++];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|