Files
lammps/src/USER-MISC/pair_kolmogorov_crespi_full.cpp
2019-04-06 10:26:56 +03:00

1123 lines
36 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Wengen Ouyang (Tel Aviv University)
e-mail: w.g.ouyang at gmail dot com
based on previous versions by Jaap Kroes
This is a complete version of the potential described in
[Kolmogorov & Crespi, Phys. Rev. B 71, 235415 (2005)]
------------------------------------------------------------------------- */
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <mpi.h>
#include "pair_kolmogorov_crespi_full.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "my_page.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
#define MAXLINE 1024
#define DELTA 4
#define PGDELTA 1
/* ---------------------------------------------------------------------- */
PairKolmogorovCrespiFull::PairKolmogorovCrespiFull(LAMMPS *lmp) : Pair(lmp)
{
// initialize element to parameter maps
nelements = 0;
elements = NULL;
nparams = maxparam = 0;
params = NULL;
elem2param = NULL;
cutKCsq = NULL;
map = NULL;
nmax = 0;
maxlocal = 0;
KC_numneigh = NULL;
KC_firstneigh = NULL;
ipage = NULL;
pgsize = oneatom = 0;
normal = NULL;
dnormal = NULL;
dnormdri = NULL;
// always compute energy offset
offset_flag = 1;
// set comm size needed by this Pair
comm_forward = 39;
tap_flag = 0;
}
/* ---------------------------------------------------------------------- */
PairKolmogorovCrespiFull::~PairKolmogorovCrespiFull()
{
memory->destroy(KC_numneigh);
memory->sfree(KC_firstneigh);
delete [] ipage;
memory->destroy(normal);
memory->destroy(dnormal);
memory->destroy(dnormdri);
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
memory->destroy(cut);
memory->destroy(offset);
}
if (elements)
for (int i = 0; i < nelements; i++) delete [] elements[i];
delete [] elements;
memory->destroy(params);
memory->destroy(elem2param);
memory->destroy(cutKCsq);
if (allocated) delete [] map;
}
/* ---------------------------------------------------------------------- */
void PairKolmogorovCrespiFull::compute(int eflag, int vflag)
{
int i,j,ii,jj,inum,jnum,itype,jtype,k,l,kk,ll;
tagint itag,jtag;
double prodnorm1,prodnorm2,fkcx,fkcy,fkcz;
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair,fpair1,fpair2;
double rsq,r,rhosq1,rhosq2,exp0,exp1,exp2,r2inv,r6inv,r8inv,Tap,dTap,Vkc;
double frho1,frho2,sumC1,sumC2,sumC11,sumC22,sumCff,fsum,rdsq1,rdsq2;
int *ilist,*jlist,*numneigh,**firstneigh;
int *KC_neighs_i,*KC_neighs_j;
evdwl = 0.0;
ev_init(eflag,vflag);
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
tagint *tag = atom->tag;
int nlocal = atom->nlocal;
int newton_pair = force->newton_pair;
double dprodnorm1[3] = {0.0, 0.0, 0.0};
double dprodnorm2[3] = {0.0, 0.0, 0.0};
double fp1[3] = {0.0, 0.0, 0.0};
double fp2[3] = {0.0, 0.0, 0.0};
double fprod1[3] = {0.0, 0.0, 0.0};
double fprod2[3] = {0.0, 0.0, 0.0};
double fk[3] = {0.0, 0.0, 0.0};
double fl[3] = {0.0, 0.0, 0.0};
double delkj[3] = {0.0, 0.0, 0.0};
double delli[3] = {0.0, 0.0, 0.0};
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// Build full neighbor list
KC_neigh();
// Calculate the normals
calc_normal();
// communicate the normal vector and its derivatives
comm->forward_comm_pair(this);
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
itag = tag[i];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
jtype = type[j];
jtag = tag[j];
// two-body interactions from full neighbor list, skip half of them
if (itag > jtag) {
if ((itag+jtag) % 2 == 0) continue;
} else if (itag < jtag) {
if ((itag+jtag) % 2 == 1) continue;
} else {
if (x[j][2] < ztmp) continue;
if (x[j][2] == ztmp && x[j][1] < ytmp) continue;
if (x[j][2] == ztmp && x[j][1] == ytmp && x[j][0] < xtmp) continue;
}
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
// only include the interation between different layers
if (rsq < cutsq[itype][jtype] && atom->molecule[i] != atom->molecule[j]) {
int iparam_ij = elem2param[map[itype]][map[jtype]];
Param& p = params[iparam_ij];
r = sqrt(rsq);
r2inv = 1.0/rsq;
r6inv = r2inv*r2inv*r2inv;
r8inv = r2inv*r6inv;
// turn on/off taper function
if (tap_flag) {
Tap = calc_Tap(r,sqrt(cutsq[itype][jtype]));
dTap = calc_dTap(r,sqrt(cutsq[itype][jtype]));
} else {Tap = 1.0; dTap = 0.0;}
// Calculate the transverse distance
// note that rho_ij does not equal to rho_ji except when normals are all along z
prodnorm1 = normal[i][0]*delx + normal[i][1]*dely + normal[i][2]*delz;
prodnorm2 = normal[j][0]*delx + normal[j][1]*dely + normal[j][2]*delz;
rhosq1 = rsq - prodnorm1*prodnorm1; // rho_ij
rhosq2 = rsq - prodnorm2*prodnorm2; // rho_ji
rdsq1 = rhosq1*p.delta2inv; // (rho_ij/delta)^2
rdsq2 = rhosq2*p.delta2inv; // (rho_ji/delta)^2
// store exponents
exp0 = exp(-p.lambda*(r-p.z0));
exp1 = exp(-rdsq1);
exp2 = exp(-rdsq2);
sumC1 = p.C0 + p.C2*rdsq1 + p.C4*rdsq1*rdsq1;
sumC2 = p.C0 + p.C2*rdsq2 + p.C4*rdsq2*rdsq2;
sumC11 = (p.C2 + 2.0*p.C4*rdsq1)*p.delta2inv;
sumC22 = (p.C2 + 2.0*p.C4*rdsq2)*p.delta2inv;
frho1 = exp1*sumC1;
frho2 = exp2*sumC2;
sumCff = p.C + frho1 + frho2;
Vkc = -p.A*p.z06*r6inv + exp0*sumCff;
// derivatives
fpair = -6.0*p.A*p.z06*r8inv + p.lambda*exp0/r*sumCff;
fpair1 = 2.0*exp0*exp1*(p.delta2inv*sumC1 - sumC11);
fpair2 = 2.0*exp0*exp2*(p.delta2inv*sumC2 - sumC22);
fsum = fpair + fpair1 + fpair2;
// derivatives of the product of rij and ni, the result is a vector
dprodnorm1[0] = dnormdri[0][0][i]*delx + dnormdri[1][0][i]*dely + dnormdri[2][0][i]*delz;
dprodnorm1[1] = dnormdri[0][1][i]*delx + dnormdri[1][1][i]*dely + dnormdri[2][1][i]*delz;
dprodnorm1[2] = dnormdri[0][2][i]*delx + dnormdri[1][2][i]*dely + dnormdri[2][2][i]*delz;
// derivatives of the product of rji and nj, the result is a vector
dprodnorm2[0] = dnormdri[0][0][j]*delx + dnormdri[1][0][j]*dely + dnormdri[2][0][j]*delz;
dprodnorm2[1] = dnormdri[0][1][j]*delx + dnormdri[1][1][j]*dely + dnormdri[2][1][j]*delz;
dprodnorm2[2] = dnormdri[0][2][j]*delx + dnormdri[1][2][j]*dely + dnormdri[2][2][j]*delz;
fp1[0] = prodnorm1*normal[i][0]*fpair1;
fp1[1] = prodnorm1*normal[i][1]*fpair1;
fp1[2] = prodnorm1*normal[i][2]*fpair1;
fp2[0] = prodnorm2*normal[j][0]*fpair2;
fp2[1] = prodnorm2*normal[j][1]*fpair2;
fp2[2] = prodnorm2*normal[j][2]*fpair2;
fprod1[0] = prodnorm1*dprodnorm1[0]*fpair1;
fprod1[1] = prodnorm1*dprodnorm1[1]*fpair1;
fprod1[2] = prodnorm1*dprodnorm1[2]*fpair1;
fprod2[0] = prodnorm2*dprodnorm2[0]*fpair2;
fprod2[1] = prodnorm2*dprodnorm2[1]*fpair2;
fprod2[2] = prodnorm2*dprodnorm2[2]*fpair2;
fkcx = (delx*fsum - fp1[0] - fp2[0])*Tap - Vkc*dTap*delx/r;
fkcy = (dely*fsum - fp1[1] - fp2[1])*Tap - Vkc*dTap*dely/r;
fkcz = (delz*fsum - fp1[2] - fp2[2])*Tap - Vkc*dTap*delz/r;
f[i][0] += fkcx - fprod1[0]*Tap;
f[i][1] += fkcy - fprod1[1]*Tap;
f[i][2] += fkcz - fprod1[2]*Tap;
f[j][0] -= fkcx + fprod2[0]*Tap;
f[j][1] -= fkcy + fprod2[1]*Tap;
f[j][2] -= fkcz + fprod2[2]*Tap;
// calculate the forces acted on the neighbors of atom i from atom j
KC_neighs_i = KC_firstneigh[i];
for (kk = 0; kk < KC_numneigh[i]; kk++) {
k = KC_neighs_i[kk];
if (k == i) continue;
// derivatives of the product of rij and ni respect to rk, k=0,1,2, where atom k is the neighbors of atom i
dprodnorm1[0] = dnormal[0][0][kk][i]*delx + dnormal[1][0][kk][i]*dely + dnormal[2][0][kk][i]*delz;
dprodnorm1[1] = dnormal[0][1][kk][i]*delx + dnormal[1][1][kk][i]*dely + dnormal[2][1][kk][i]*delz;
dprodnorm1[2] = dnormal[0][2][kk][i]*delx + dnormal[1][2][kk][i]*dely + dnormal[2][2][kk][i]*delz;
fk[0] = (-prodnorm1*dprodnorm1[0]*fpair1)*Tap;
fk[1] = (-prodnorm1*dprodnorm1[1]*fpair1)*Tap;
fk[2] = (-prodnorm1*dprodnorm1[2]*fpair1)*Tap;
f[k][0] += fk[0];
f[k][1] += fk[1];
f[k][2] += fk[2];
delkj[0] = x[k][0] - x[j][0];
delkj[1] = x[k][1] - x[j][1];
delkj[2] = x[k][2] - x[j][2];
if (evflag) ev_tally_xyz(k,j,nlocal,newton_pair,0.0,0.0,fk[0],fk[1],fk[2],delkj[0],delkj[1],delkj[2]);
}
// calculate the forces acted on the neighbors of atom j from atom i
KC_neighs_j = KC_firstneigh[j];
for (ll = 0; ll < KC_numneigh[j]; ll++) {
l = KC_neighs_j[ll];
if (l == j) continue;
// derivatives of the product of rji and nj respect to rl, l=0,1,2, where atom l is the neighbors of atom j
dprodnorm2[0] = dnormal[0][0][ll][j]*delx + dnormal[1][0][ll][j]*dely + dnormal[2][0][ll][j]*delz;
dprodnorm2[1] = dnormal[0][1][ll][j]*delx + dnormal[1][1][ll][j]*dely + dnormal[2][1][ll][j]*delz;
dprodnorm2[2] = dnormal[0][2][ll][j]*delx + dnormal[1][2][ll][j]*dely + dnormal[2][2][ll][j]*delz;
fl[0] = (-prodnorm2*dprodnorm2[0]*fpair2)*Tap;
fl[1] = (-prodnorm2*dprodnorm2[1]*fpair2)*Tap;
fl[2] = (-prodnorm2*dprodnorm2[2]*fpair2)*Tap;
f[l][0] += fl[0];
f[l][1] += fl[1];
f[l][2] += fl[2];
delli[0] = x[l][0] - x[i][0];
delli[1] = x[l][1] - x[i][1];
delli[2] = x[l][2] - x[i][2];
if (evflag) ev_tally_xyz(l,i,nlocal,newton_pair,0.0,0.0,fl[0],fl[1],fl[2],delli[0],delli[1],delli[2]);
}
if (eflag) {
if (tap_flag) evdwl = Tap*Vkc;
else evdwl = Vkc - offset[itype][jtype];
}
if (evflag) ev_tally_xyz(i,j,nlocal,newton_pair,evdwl,0,fkcx,fkcy,fkcz,delx,dely,delz);
}
}
}
if (vflag_fdotr) virial_fdotr_compute();
}
/* ----------------------------------------------------------------------
Calculate the normals for each atom
------------------------------------------------------------------------- */
void PairKolmogorovCrespiFull::calc_normal()
{
int i,j,ii,jj,inum,jnum;
int cont,id,ip,m;
double nn,xtp,ytp,ztp,delx,dely,delz,nn2;
int *ilist,*jlist;
double pv12[3],pv31[3],pv23[3],n1[3],dni[3],dnn[3][3],vet[3][3],dpvdri[3][3];
double dn1[3][3][3],dpv12[3][3][3],dpv23[3][3][3],dpv31[3][3][3];
double **x = atom->x;
// grow normal array if necessary
if (atom->nmax > nmax) {
memory->destroy(normal);
memory->destroy(dnormal);
memory->destroy(dnormdri);
nmax = atom->nmax;
memory->create(normal,nmax,3,"KolmogorovCrespiFull:normal");
memory->create(dnormdri,3,3,nmax,"KolmogorovCrespiFull:dnormdri");
memory->create(dnormal,3,3,3,nmax,"KolmogorovCrespiFull:dnormal");
}
inum = list->inum;
ilist = list->ilist;
//Calculate normals
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtp = x[i][0];
ytp = x[i][1];
ztp = x[i][2];
// Initialize the arrays
for (id = 0; id < 3; id++){
pv12[id] = 0.0;
pv31[id] = 0.0;
pv23[id] = 0.0;
n1[id] = 0.0;
dni[id] = 0.0;
normal[i][id] = 0.0;
for (ip = 0; ip < 3; ip++){
vet[ip][id] = 0.0;
dnn[ip][id] = 0.0;
dpvdri[ip][id] = 0.0;
dnormdri[ip][id][i] = 0.0;
for (m = 0; m < 3; m++){
dpv12[ip][id][m] = 0.0;
dpv31[ip][id][m] = 0.0;
dpv23[ip][id][m] = 0.0;
dn1[ip][id][m] = 0.0;
dnormal[ip][id][m][i] = 0.0;
}
}
}
cont = 0;
jlist = KC_firstneigh[i];
jnum = KC_numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
delx = x[j][0] - xtp;
dely = x[j][1] - ytp;
delz = x[j][2] - ztp;
vet[cont][0] = delx;
vet[cont][1] = dely;
vet[cont][2] = delz;
cont++;
}
if (cont <= 1) {
normal[i][0] = 0.0;
normal[i][1] = 0.0;
normal[i][2] = 1.0;
// derivatives of normal vector is zero
for (id = 0; id < 3; id++){
for (ip = 0; ip < 3; ip++){
dnormdri[id][ip][i] = 0.0;
for (m = 0; m < 3; m++){
dnormal[id][ip][m][i] = 0.0;
}
}
}
}
else if (cont == 2) {
// for the atoms at the edge who has only two neighbor atoms
pv12[0] = vet[0][1]*vet[1][2] - vet[1][1]*vet[0][2];
pv12[1] = vet[0][2]*vet[1][0] - vet[1][2]*vet[0][0];
pv12[2] = vet[0][0]*vet[1][1] - vet[1][0]*vet[0][1];
dpvdri[0][0] = 0.0;
dpvdri[0][1] = vet[0][2]-vet[1][2];
dpvdri[0][2] = vet[1][1]-vet[0][1];
dpvdri[1][0] = vet[1][2]-vet[0][2];
dpvdri[1][1] = 0.0;
dpvdri[1][2] = vet[0][0]-vet[1][0];
dpvdri[2][0] = vet[0][1]-vet[1][1];
dpvdri[2][1] = vet[1][0]-vet[0][0];
dpvdri[2][2] = 0.0;
// derivatives respect to the first neighbor, atom k
dpv12[0][0][0] = 0.0;
dpv12[0][1][0] = vet[1][2];
dpv12[0][2][0] = -vet[1][1];
dpv12[1][0][0] = -vet[1][2];
dpv12[1][1][0] = 0.0;
dpv12[1][2][0] = vet[1][0];
dpv12[2][0][0] = vet[1][1];
dpv12[2][1][0] = -vet[1][0];
dpv12[2][2][0] = 0.0;
// derivatives respect to the second neighbor, atom l
dpv12[0][0][1] = 0.0;
dpv12[0][1][1] = -vet[0][2];
dpv12[0][2][1] = vet[0][1];
dpv12[1][0][1] = vet[0][2];
dpv12[1][1][1] = 0.0;
dpv12[1][2][1] = -vet[0][0];
dpv12[2][0][1] = -vet[0][1];
dpv12[2][1][1] = vet[0][0];
dpv12[2][2][1] = 0.0;
// derivatives respect to the third neighbor, atom n
for (id = 0; id < 3; id++){
for (ip = 0; ip < 3; ip++){
dpv12[id][ip][2] = 0.0;
}
}
n1[0] = pv12[0];
n1[1] = pv12[1];
n1[2] = pv12[2];
// the magnitude of the normal vector
nn2 = n1[0]*n1[0] + n1[1]*n1[1] + n1[2]*n1[2];
nn = sqrt(nn2);
if (nn == 0) error->one(FLERR,"The magnitude of the normal vector is zero");
// the unit normal vector
normal[i][0] = n1[0]/nn;
normal[i][1] = n1[1]/nn;
normal[i][2] = n1[2]/nn;
// derivatives of nn, dnn:3x1 vector
dni[0] = (n1[0]*dpvdri[0][0] + n1[1]*dpvdri[1][0] + n1[2]*dpvdri[2][0])/nn;
dni[1] = (n1[0]*dpvdri[0][1] + n1[1]*dpvdri[1][1] + n1[2]*dpvdri[2][1])/nn;
dni[2] = (n1[0]*dpvdri[0][2] + n1[1]*dpvdri[1][2] + n1[2]*dpvdri[2][2])/nn;
// derivatives of unit vector ni respect to ri, the result is 3x3 matrix
for (id = 0; id < 3; id++){
for (ip = 0; ip < 3; ip++){
dnormdri[id][ip][i] = dpvdri[id][ip]/nn - n1[id]*dni[ip]/nn2;
}
}
// derivatives of non-normalized normal vector, dn1:3x3x3 array
for (id = 0; id < 3; id++){
for (ip = 0; ip < 3; ip++){
for (m = 0; m < 3; m++){
dn1[id][ip][m] = dpv12[id][ip][m];
}
}
}
// derivatives of nn, dnn:3x3 vector
// dnn[id][m]: the derivative of nn respect to r[id][m], id,m=0,1,2
// r[id][m]: the id's component of atom m
for (m = 0; m < 3; m++){
for (id = 0; id < 3; id++){
dnn[id][m] = (n1[0]*dn1[0][id][m] + n1[1]*dn1[1][id][m] + n1[2]*dn1[2][id][m])/nn;
}
}
// dnormal[id][ip][m][i]: the derivative of normal[id] respect to r[ip][m], id,ip=0,1,2
// for atom m, which is a neighbor atom of atom i, m=0,jnum-1
for (m = 0; m < 3; m++){
for (id = 0; id < 3; id++){
for (ip = 0; ip < 3; ip++){
dnormal[id][ip][m][i] = dn1[id][ip][m]/nn - n1[id]*dnn[ip][m]/nn2;
}
}
}
}
//##############################################################################################
else if(cont == 3) {
// for the atoms at the edge who has only two neighbor atoms
pv12[0] = vet[0][1]*vet[1][2] - vet[1][1]*vet[0][2];
pv12[1] = vet[0][2]*vet[1][0] - vet[1][2]*vet[0][0];
pv12[2] = vet[0][0]*vet[1][1] - vet[1][0]*vet[0][1];
// derivatives respect to the first neighbor, atom k
dpv12[0][0][0] = 0.0;
dpv12[0][1][0] = vet[1][2];
dpv12[0][2][0] = -vet[1][1];
dpv12[1][0][0] = -vet[1][2];
dpv12[1][1][0] = 0.0;
dpv12[1][2][0] = vet[1][0];
dpv12[2][0][0] = vet[1][1];
dpv12[2][1][0] = -vet[1][0];
dpv12[2][2][0] = 0.0;
// derivatives respect to the second neighbor, atom l
dpv12[0][0][1] = 0.0;
dpv12[0][1][1] = -vet[0][2];
dpv12[0][2][1] = vet[0][1];
dpv12[1][0][1] = vet[0][2];
dpv12[1][1][1] = 0.0;
dpv12[1][2][1] = -vet[0][0];
dpv12[2][0][1] = -vet[0][1];
dpv12[2][1][1] = vet[0][0];
dpv12[2][2][1] = 0.0;
// derivatives respect to the third neighbor, atom n
for (id = 0; id < 3; id++){
for (ip = 0; ip < 3; ip++){
dpv12[id][ip][2] = 0.0;
}
}
pv31[0] = vet[2][1]*vet[0][2] - vet[0][1]*vet[2][2];
pv31[1] = vet[2][2]*vet[0][0] - vet[0][2]*vet[2][0];
pv31[2] = vet[2][0]*vet[0][1] - vet[0][0]*vet[2][1];
// derivatives respect to the first neighbor, atom k
dpv31[0][0][0] = 0.0;
dpv31[0][1][0] = -vet[2][2];
dpv31[0][2][0] = vet[2][1];
dpv31[1][0][0] = vet[2][2];
dpv31[1][1][0] = 0.0;
dpv31[1][2][0] = -vet[2][0];
dpv31[2][0][0] = -vet[2][1];
dpv31[2][1][0] = vet[2][0];
dpv31[2][2][0] = 0.0;
// derivatives respect to the third neighbor, atom n
dpv31[0][0][2] = 0.0;
dpv31[0][1][2] = vet[0][2];
dpv31[0][2][2] = -vet[0][1];
// derivatives of pv13[1] to rn
dpv31[1][0][2] = -vet[0][2];
dpv31[1][1][2] = 0.0;
dpv31[1][2][2] = vet[0][0];
// derivatives of pv13[2] to rn
dpv31[2][0][2] = vet[0][1];
dpv31[2][1][2] = -vet[0][0];
dpv31[2][2][2] = 0.0;
// derivatives respect to the second neighbor, atom l
for (id = 0; id < 3; id++){
for (ip = 0; ip < 3; ip++){
dpv31[id][ip][1] = 0.0;
}
}
pv23[0] = vet[1][1]*vet[2][2] - vet[2][1]*vet[1][2];
pv23[1] = vet[1][2]*vet[2][0] - vet[2][2]*vet[1][0];
pv23[2] = vet[1][0]*vet[2][1] - vet[2][0]*vet[1][1];
// derivatives respect to the second neighbor, atom k
for (id = 0; id < 3; id++){
for (ip = 0; ip < 3; ip++){
dpv23[id][ip][0] = 0.0;
}
}
// derivatives respect to the second neighbor, atom l
dpv23[0][0][1] = 0.0;
dpv23[0][1][1] = vet[2][2];
dpv23[0][2][1] = -vet[2][1];
dpv23[1][0][1] = -vet[2][2];
dpv23[1][1][1] = 0.0;
dpv23[1][2][1] = vet[2][0];
dpv23[2][0][1] = vet[2][1];
dpv23[2][1][1] = -vet[2][0];
dpv23[2][2][1] = 0.0;
// derivatives respect to the third neighbor, atom n
dpv23[0][0][2] = 0.0;
dpv23[0][1][2] = -vet[1][2];
dpv23[0][2][2] = vet[1][1];
dpv23[1][0][2] = vet[1][2];
dpv23[1][1][2] = 0.0;
dpv23[1][2][2] = -vet[1][0];
dpv23[2][0][2] = -vet[1][1];
dpv23[2][1][2] = vet[1][0];
dpv23[2][2][2] = 0.0;
//############################################################################################
// average the normal vectors by using the 3 neighboring planes
n1[0] = (pv12[0] + pv31[0] + pv23[0])/cont;
n1[1] = (pv12[1] + pv31[1] + pv23[1])/cont;
n1[2] = (pv12[2] + pv31[2] + pv23[2])/cont;
// the magnitude of the normal vector
nn2 = n1[0]*n1[0] + n1[1]*n1[1] + n1[2]*n1[2];
nn = sqrt(nn2);
if (nn == 0) error->one(FLERR,"The magnitude of the normal vector is zero");
// the unit normal vector
normal[i][0] = n1[0]/nn;
normal[i][1] = n1[1]/nn;
normal[i][2] = n1[2]/nn;
// for the central atoms, dnormdri is always zero
for (id = 0; id < 3; id++){
for (ip = 0; ip < 3; ip++){
dnormdri[id][ip][i] = 0.0;
}
} // end of derivatives of normals respect to atom i
// derivatives of non-normalized normal vector, dn1:3x3x3 array
for (id = 0; id < 3; id++){
for (ip = 0; ip < 3; ip++){
for (m = 0; m < 3; m++){
dn1[id][ip][m] = (dpv12[id][ip][m] + dpv23[id][ip][m] + dpv31[id][ip][m])/cont;
}
}
}
// derivatives of nn, dnn:3x3 vector
// dnn[id][m]: the derivative of nn respect to r[id][m], id,m=0,1,2
// r[id][m]: the id's component of atom m
for (m = 0; m < 3; m++){
for (id = 0; id < 3; id++){
dnn[id][m] = (n1[0]*dn1[0][id][m] + n1[1]*dn1[1][id][m] + n1[2]*dn1[2][id][m])/nn;
}
}
// dnormal[id][ip][m][i]: the derivative of normal[id] respect to r[ip][m], id,ip=0,1,2
// for atom m, which is a neighbor atom of atom i, m=0,jnum-1
for (m = 0; m < 3; m++){
for (id = 0; id < 3; id++){
for (ip = 0; ip < 3; ip++){
dnormal[id][ip][m][i] = dn1[id][ip][m]/nn - n1[id]*dnn[ip][m]/nn2;
}
}
}
}
else {
error->one(FLERR,"There are too many neighbors for calculating normals");
}
//##############################################################################################
}
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairKolmogorovCrespiFull::init_style()
{
if (force->newton_pair == 0)
error->all(FLERR,"Pair style kolmolgorov/crespi/full requires newton pair on");
if (!atom->molecule_flag)
error->all(FLERR,"Pair style kolmolgorov/crespi/full requires atom attribute molecule");
// need a full neighbor list, including neighbors of ghosts
int irequest = neighbor->request(this,instance_me);
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;
neighbor->requests[irequest]->ghost = 1;
// local KC neighbor list
// create pages if first time or if neighbor pgsize/oneatom has changed
int create = 0;
if (ipage == NULL) create = 1;
if (pgsize != neighbor->pgsize) create = 1;
if (oneatom != neighbor->oneatom) create = 1;
if (create) {
delete [] ipage;
pgsize = neighbor->pgsize;
oneatom = neighbor->oneatom;
int nmypage= comm->nthreads;
ipage = new MyPage<int>[nmypage];
for (int i = 0; i < nmypage; i++)
ipage[i].init(oneatom,pgsize,PGDELTA);
}
}
/* ----------------------------------------------------------------------
create neighbor list from main neighbor list for calculating the normals
------------------------------------------------------------------------- */
void PairKolmogorovCrespiFull::KC_neigh()
{
int i,j,ii,jj,n,allnum,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,rsq;
int *ilist,*jlist,*numneigh,**firstneigh;
int *neighptr;
double **x = atom->x;
int *type = atom->type;
if (atom->nmax > maxlocal) {
maxlocal = atom->nmax;
memory->destroy(KC_numneigh);
memory->sfree(KC_firstneigh);
memory->create(KC_numneigh,maxlocal,"KolmogorovCrespiFull:numneigh");
KC_firstneigh = (int **) memory->smalloc(maxlocal*sizeof(int *),
"KolmogorovCrespiFull:firstneigh");
}
allnum = list->inum + list->gnum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// store all KC neighs of owned and ghost atoms
// scan full neighbor list of I
ipage->reset();
for (ii = 0; ii < allnum; ii++) {
i = ilist[ii];
n = 0;
neighptr = ipage->vget();
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = map[type[i]];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
jtype = map[type[j]];
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
if (rsq != 0 && rsq < cutKCsq[itype][jtype] && atom->molecule[i] == atom->molecule[j]) {
neighptr[n++] = j;
}
}
KC_firstneigh[i] = neighptr;
KC_numneigh[i] = n;
if (n > 3) error->one(FLERR,"There are too many neighbors for some atoms, please check your configuration");
ipage->vgot(n);
if (ipage->status())
error->one(FLERR,"Neighbor list overflow, boost neigh_modify one");
}
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairKolmogorovCrespiFull::allocate()
{
allocated = 1;
int n = atom->ntypes;
memory->create(setflag,n+1,n+1,"pair:setflag");
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
setflag[i][j] = 0;
memory->create(cutsq,n+1,n+1,"pair:cutsq");
memory->create(cut,n+1,n+1,"pair:cut");
memory->create(offset,n+1,n+1,"pair:offset");
map = new int[atom->ntypes+1];
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairKolmogorovCrespiFull::settings(int narg, char **arg)
{
if (narg < 1 || narg > 2) error->all(FLERR,"Illegal pair_style command");
if (strcmp(force->pair_style,"hybrid/overlay")!=0)
error->all(FLERR,"ERROR: requires hybrid/overlay pair_style");
cut_global = force->numeric(FLERR,arg[0]);
if (narg == 2) tap_flag = force->numeric(FLERR,arg[1]);
// reset cutoffs that have been explicitly set
if (allocated) {
int i,j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++)
if (setflag[i][j]) cut[i][j] = cut_global;
}
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void PairKolmogorovCrespiFull::coeff(int narg, char **arg)
{
int i,j,n;
if (narg != 3 + atom->ntypes)
error->all(FLERR,"Incorrect args for pair coefficients");
if (!allocated) allocate();
int ilo,ihi,jlo,jhi;
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
// read args that map atom types to elements in potential file
// map[i] = which element the Ith atom type is, -1 if NULL
// nelements = # of unique elements
// elements = list of element names
if (elements) {
for (i = 0; i < nelements; i++) delete [] elements[i];
delete [] elements;
}
elements = new char*[atom->ntypes];
for (i = 0; i < atom->ntypes; i++) elements[i] = NULL;
nelements = 0;
for (i = 3; i < narg; i++) {
if (strcmp(arg[i],"NULL") == 0) {
map[i-2] = -1;
continue;
}
for (j = 0; j < nelements; j++)
if (strcmp(arg[i],elements[j]) == 0) break;
map[i-2] = j;
if (j == nelements) {
n = strlen(arg[i]) + 1;
elements[j] = new char[n];
strcpy(elements[j],arg[i]);
nelements++;
}
}
read_file(arg[2]);
double cut_one = cut_global;
int count = 0;
for (int i = ilo; i <= ihi; i++) {
for (int j = MAX(jlo,i); j <= jhi; j++) {
cut[i][j] = cut_one;
setflag[i][j] = 1;
count++;
}
}
if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients");
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairKolmogorovCrespiFull::init_one(int i, int j)
{
if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set");
if (offset_flag && (cut[i][j] > 0.0)) {
int iparam_ij = elem2param[map[i]][map[j]];
Param& p = params[iparam_ij];
offset[i][j] = -p.A*pow(p.z0/cut[i][j],6);
} else offset[i][j] = 0.0;
offset[j][i] = offset[i][j];
return cut[i][j];
}
/* ----------------------------------------------------------------------
read Kolmogorov-Crespi potential file
------------------------------------------------------------------------- */
void PairKolmogorovCrespiFull::read_file(char *filename)
{
int params_per_line = 12;
char **words = new char*[params_per_line+1];
memory->sfree(params);
params = NULL;
nparams = maxparam = 0;
// open file on proc 0
FILE *fp;
if (comm->me == 0) {
fp = force->open_potential(filename);
if (fp == NULL) {
char str[128];
snprintf(str,128,"Cannot open KC potential file %s",filename);
error->one(FLERR,str);
}
}
// read each line out of file, skipping blank lines or leading '#'
// store line of params if all 3 element tags are in element list
int i,j,n,m,nwords,ielement,jelement;
char line[MAXLINE],*ptr;
int eof = 0;
while (1) {
if (comm->me == 0) {
ptr = fgets(line,MAXLINE,fp);
if (ptr == NULL) {
eof = 1;
fclose(fp);
} else n = strlen(line) + 1;
}
MPI_Bcast(&eof,1,MPI_INT,0,world);
if (eof) break;
MPI_Bcast(&n,1,MPI_INT,0,world);
MPI_Bcast(line,n,MPI_CHAR,0,world);
// strip comment, skip line if blank
if ((ptr = strchr(line,'#'))) *ptr = '\0';
nwords = atom->count_words(line);
if (nwords == 0) continue;
// concatenate additional lines until have params_per_line words
while (nwords < params_per_line) {
n = strlen(line);
if (comm->me == 0) {
ptr = fgets(&line[n],MAXLINE-n,fp);
if (ptr == NULL) {
eof = 1;
fclose(fp);
} else n = strlen(line) + 1;
}
MPI_Bcast(&eof,1,MPI_INT,0,world);
if (eof) break;
MPI_Bcast(&n,1,MPI_INT,0,world);
MPI_Bcast(line,n,MPI_CHAR,0,world);
if ((ptr = strchr(line,'#'))) *ptr = '\0';
nwords = atom->count_words(line);
}
if (nwords != params_per_line)
error->all(FLERR,"Insufficient format in KC potential file");
// words = ptrs to all words in line
nwords = 0;
words[nwords++] = strtok(line," \t\n\r\f");
while ((words[nwords++] = strtok(NULL," \t\n\r\f"))) continue;
// ielement,jelement = 1st args
// if these 2 args are in element list, then parse this line
// else skip to next line (continue)
for (ielement = 0; ielement < nelements; ielement++)
if (strcmp(words[0],elements[ielement]) == 0) break;
if (ielement == nelements) continue;
for (jelement = 0; jelement < nelements; jelement++)
if (strcmp(words[1],elements[jelement]) == 0) break;
if (jelement == nelements) continue;
// load up parameter settings and error check their values
if (nparams == maxparam) {
maxparam += DELTA;
params = (Param *) memory->srealloc(params,maxparam*sizeof(Param),
"pair:params");
}
params[nparams].ielement = ielement;
params[nparams].jelement = jelement;
params[nparams].z0 = atof(words[2]);
params[nparams].C0 = atof(words[3]);
params[nparams].C2 = atof(words[4]);
params[nparams].C4 = atof(words[5]);
params[nparams].C = atof(words[6]);
params[nparams].delta = atof(words[7]);
params[nparams].lambda = atof(words[8]);
params[nparams].A = atof(words[9]);
// S provides a convenient scaling of all energies
params[nparams].S = atof(words[10]);
params[nparams].rcut = atof(words[11]);
// energies in meV further scaled by S
double meV = 1.0e-3*params[nparams].S;
params[nparams].C *= meV;
params[nparams].A *= meV;
params[nparams].C0 *= meV;
params[nparams].C2 *= meV;
params[nparams].C4 *= meV;
// precompute some quantities
params[nparams].delta2inv = pow(params[nparams].delta,-2);
params[nparams].z06 = pow(params[nparams].z0,6);
nparams++;
//if(nparams >= pow(atom->ntypes,3)) break;
}
memory->destroy(elem2param);
memory->destroy(cutKCsq);
memory->create(elem2param,nelements,nelements,"pair:elem2param");
memory->create(cutKCsq,nelements,nelements,"pair:cutKCsq");
for (i = 0; i < nelements; i++) {
for (j = 0; j < nelements; j++) {
n = -1;
for (m = 0; m < nparams; m++) {
if (i == params[m].ielement && j == params[m].jelement) {
if (n >= 0) error->all(FLERR,"Potential file has duplicate entry");
n = m;
}
}
if (n < 0) error->all(FLERR,"Potential file is missing an entry");
elem2param[i][j] = n;
cutKCsq[i][j] = params[n].rcut*params[n].rcut;
}
}
delete [] words;
}
/* ---------------------------------------------------------------------- */
double PairKolmogorovCrespiFull::single(int /*i*/, int /*j*/, int itype, int jtype, double rsq,
double /*factor_coul*/, double factor_lj,
double &fforce)
{
double r,r2inv,r6inv,r8inv,forcelj,philj;
double Tap,dTap,Vkc,fpair;
int iparam_ij = elem2param[map[itype]][map[jtype]];
Param& p = params[iparam_ij];
r = sqrt(rsq);
// turn on/off taper function
if (tap_flag) {
Tap = calc_Tap(r,sqrt(cutsq[itype][jtype]));
dTap = calc_dTap(r,sqrt(cutsq[itype][jtype]));
} else {Tap = 1.0; dTap = 0.0;}
r2inv = 1.0/rsq;
r6inv = r2inv*r2inv*r2inv;
r8inv = r2inv*r6inv;
Vkc = -p.A*p.z06*r6inv;
// derivatives
fpair = -6.0*p.A*p.z06*r8inv;
forcelj = fpair;
fforce = factor_lj*(forcelj*Tap - Vkc*dTap/r);
if (tap_flag) philj = Vkc*Tap;
else philj = Vkc - offset[itype][jtype];
return factor_lj*philj;
}
/* ---------------------------------------------------------------------- */
int PairKolmogorovCrespiFull::pack_forward_comm(int n, int *list, double *buf,
int /*pbc_flag*/, int * /*pbc*/)
{
int i,j,m,l,ip,id;
m = 0;
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = normal[j][0];
buf[m++] = normal[j][1];
buf[m++] = normal[j][2];
buf[m++] = dnormdri[0][0][j];
buf[m++] = dnormdri[0][1][j];
buf[m++] = dnormdri[0][2][j];
buf[m++] = dnormdri[1][0][j];
buf[m++] = dnormdri[1][1][j];
buf[m++] = dnormdri[1][2][j];
buf[m++] = dnormdri[2][0][j];
buf[m++] = dnormdri[2][1][j];
buf[m++] = dnormdri[2][2][j];
for (l = 0; l < 3; l++){
for (id = 0; id < 3; id++){
for (ip = 0; ip < 3; ip++){
buf[m++] = dnormal[id][ip][l][j];
}
}
}
}
return m;
}
/* ---------------------------------------------------------------------- */
void PairKolmogorovCrespiFull::unpack_forward_comm(int n, int first, double *buf)
{
int i,m,last,l,ip,id;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
normal[i][0] = buf[m++];
normal[i][1] = buf[m++];
normal[i][2] = buf[m++];
dnormdri[0][0][i] = buf[m++];
dnormdri[0][1][i] = buf[m++];
dnormdri[0][2][i] = buf[m++];
dnormdri[1][0][i] = buf[m++];
dnormdri[1][1][i] = buf[m++];
dnormdri[1][2][i] = buf[m++];
dnormdri[2][0][i] = buf[m++];
dnormdri[2][1][i] = buf[m++];
dnormdri[2][2][i] = buf[m++];
for (l = 0; l < 3; l++){
for (id = 0; id < 3; id++){
for (ip = 0; ip < 3; ip++){
dnormal[id][ip][l][i] = buf[m++];
}
}
}
}
}
/* ---------------------------------------------------------------------- */