Files
lammps/lib/colvars/colvarcomp_gpath.cpp
Giacomo Fiorin 377c652a83 Update Colvars library to version 2023-05-01
This update consists exclusively of bugfixes or maintenance-related changes.

The following is a list of pull requests in the Colvars repository since the previous update to LAMMPS:

- 532 Add XYZ trajectory reading feature
  https://github.com/Colvars/colvars/pull/532 (@jhenin, @giacomofiorin)

- 531 Delete objects quietly, unless explicitly requested via script (including VMD)
  https://github.com/Colvars/colvars/pull/531 (@giacomofiorin)

- 530 Append newline to log and error messages if not already present
  https://github.com/Colvars/colvars/pull/530 (@giacomofiorin)

- 528 Forward-declare OpenMP lock
  https://github.com/Colvars/colvars/pull/528 (@giacomofiorin)

- 527 Remove unneeded STL container
  https://github.com/Colvars/colvars/pull/527 (@giacomofiorin)

- 526 Allow collecting configuration files and strings before setting up interface
  https://github.com/Colvars/colvars/pull/526 (@giacomofiorin, @jhenin)

- 523 Fallback to linearCombination when customFunction is missing in customColvar
  https://github.com/Colvars/colvars/pull/523 (@HanatoK, @giacomofiorin)

- 522 Use iostream::fail() to check for I/O error
  https://github.com/Colvars/colvars/pull/522 (@jhenin)

- 520 Fix ref count
  https://github.com/Colvars/colvars/pull/520 (@giacomofiorin)

- 513 Set target temperature through a common code path
  https://github.com/Colvars/colvars/pull/513 (@giacomofiorin, @jhenin)

- 509 Safer detection of Windows with recent Microsoft Visual Studio versions
  https://github.com/Colvars/colvars/pull/509 (@akohlmey)

- 508 Update LAMMPS patching method to reflect Lepton availability
  https://github.com/Colvars/colvars/pull/508 (@giacomofiorin)

- 497 Increase the precision of write_multicol
  https://github.com/Colvars/colvars/pull/497 (@HanatoK)

- 496 Only perform MTS automatic enable/disable for timeStepFactor > 1
  https://github.com/Colvars/colvars/pull/496 (@giacomofiorin)

- 493 Remove unused branch of quaternion input function
  https://github.com/Colvars/colvars/pull/493 (@giacomofiorin)

- 489 Ensure there are spaces between the fields in the header
  https://github.com/Colvars/colvars/pull/489 (@HanatoK)

- 487 Use map of output streams, and return references to its elements
  https://github.com/Colvars/colvars/pull/487 (@giacomofiorin, @jhenin)

- 486 Remember first step of moving restraint
  https://github.com/Colvars/colvars/pull/486 (@jhenin)

- 485 Add decoupling option for moving restraints
  https://github.com/Colvars/colvars/pull/485 (@jhenin)

- 483 Update Lepton via patching procedure
  https://github.com/Colvars/colvars/pull/483 (@giacomofiorin)

- 481 Make file-reading operations of input data abstractable
  https://github.com/Colvars/colvars/pull/481 (@giacomofiorin)

Authors: @akohlmey, @giacomofiorin, @HanatoK, @jhenin
2023-05-17 13:29:00 -04:00

799 lines
40 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#if (__cplusplus >= 201103L)
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/Colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#include <numeric>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <fstream>
#include "colvarmodule.h"
#include "colvarvalue.h"
#include "colvarparse.h"
#include "colvar.h"
#include "colvarcomp.h"
colvar::CartesianBasedPath::CartesianBasedPath(std::string const &conf): cvc(conf), atoms(nullptr), reference_frames(0) {
// Parse selected atoms
atoms = parse_group(conf, "atoms");
has_user_defined_fitting = false;
std::string fitting_conf;
if (key_lookup(conf, "fittingAtoms", &fitting_conf)) {
has_user_defined_fitting = true;
}
// Lookup reference column of PDB
// Copied from the RMSD class
std::string reference_column;
double reference_column_value;
if (get_keyval(conf, "refPositionsCol", reference_column, std::string(""))) {
bool found = get_keyval(conf, "refPositionsColValue", reference_column_value, 0.0);
if (found && reference_column_value == 0.0) {
cvm::error("Error: refPositionsColValue, "
"if provided, must be non-zero.\n");
return;
}
}
// Lookup all reference frames
bool has_frames = true;
total_reference_frames = 0;
while (has_frames) {
std::string reference_position_file_lookup = "refPositionsFile" + cvm::to_str(total_reference_frames + 1);
if (key_lookup(conf, reference_position_file_lookup.c_str())) {
std::string reference_position_filename;
get_keyval(conf, reference_position_file_lookup.c_str(), reference_position_filename, std::string(""));
std::vector<cvm::atom_pos> reference_position(atoms->size());
cvm::load_coords(reference_position_filename.c_str(), &reference_position, atoms, reference_column, reference_column_value);
reference_frames.push_back(reference_position);
++total_reference_frames;
} else {
has_frames = false;
}
}
// Setup alignment to compute RMSD with respect to reference frames
for (size_t i_frame = 0; i_frame < reference_frames.size(); ++i_frame) {
cvm::atom_group* tmp_atoms = parse_group(conf, "atoms");
if (!has_user_defined_fitting) {
// Swipe from the rmsd class
tmp_atoms->enable(f_ag_center);
tmp_atoms->enable(f_ag_rotate);
tmp_atoms->ref_pos = reference_frames[i_frame];
tmp_atoms->center_ref_pos();
tmp_atoms->enable(f_ag_fit_gradients);
tmp_atoms->rot.request_group1_gradients(tmp_atoms->size());
tmp_atoms->rot.request_group2_gradients(tmp_atoms->size());
comp_atoms.push_back(tmp_atoms);
} else {
// parse a group of atoms for fitting
std::string fitting_group_name = std::string("fittingAtoms") + cvm::to_str(i_frame);
cvm::atom_group* tmp_fitting_atoms = new cvm::atom_group(fitting_group_name.c_str());
tmp_fitting_atoms->parse(fitting_conf);
tmp_fitting_atoms->disable(f_ag_scalable);
tmp_fitting_atoms->fit_gradients.assign(tmp_fitting_atoms->size(), cvm::atom_pos(0.0, 0.0, 0.0));
std::string reference_position_file_lookup = "refPositionsFile" + cvm::to_str(i_frame + 1);
std::string reference_position_filename;
get_keyval(conf, reference_position_file_lookup.c_str(), reference_position_filename, std::string(""));
std::vector<cvm::atom_pos> reference_fitting_position(tmp_fitting_atoms->size());
cvm::load_coords(reference_position_filename.c_str(), &reference_fitting_position, tmp_fitting_atoms, reference_column, reference_column_value);
// setup the atom group for calculating
tmp_atoms->enable(f_ag_center);
tmp_atoms->enable(f_ag_rotate);
tmp_atoms->b_user_defined_fit = true;
tmp_atoms->disable(f_ag_scalable);
tmp_atoms->ref_pos = reference_fitting_position;
tmp_atoms->center_ref_pos();
tmp_atoms->enable(f_ag_fit_gradients);
tmp_atoms->enable(f_ag_fitting_group);
tmp_atoms->fitting_group = tmp_fitting_atoms;
tmp_atoms->rot.request_group1_gradients(tmp_fitting_atoms->size());
tmp_atoms->rot.request_group2_gradients(tmp_fitting_atoms->size());
reference_fitting_frames.push_back(reference_fitting_position);
comp_atoms.push_back(tmp_atoms);
}
}
x.type(colvarvalue::type_scalar);
// Don't use implicit gradient
enable(f_cvc_explicit_gradient);
}
colvar::CartesianBasedPath::~CartesianBasedPath() {
for (auto it_comp_atoms = comp_atoms.begin(); it_comp_atoms != comp_atoms.end(); ++it_comp_atoms) {
if (*it_comp_atoms != nullptr) {
delete (*it_comp_atoms);
(*it_comp_atoms) = nullptr;
}
}
// Avoid double-freeing due to CVC-in-CVC construct
atom_groups.clear();
}
void colvar::CartesianBasedPath::computeDistanceToReferenceFrames(std::vector<cvm::real>& result) {
for (size_t i_frame = 0; i_frame < reference_frames.size(); ++i_frame) {
cvm::real frame_rmsd = 0.0;
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
frame_rmsd += ((*(comp_atoms[i_frame]))[i_atom].pos - reference_frames[i_frame][i_atom]).norm2();
}
frame_rmsd /= cvm::real(atoms->size());
frame_rmsd = cvm::sqrt(frame_rmsd);
result[i_frame] = frame_rmsd;
}
}
colvar::gspath::gspath(std::string const &conf): CartesianBasedPath(conf) {
set_function_type("gspath");
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
if (use_second_closest_frame == true) {
cvm::log(std::string("Geometric path s(σ) will use the second closest frame to compute s_(m-1)\n"));
} else {
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m-1)\n"));
}
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
if (use_third_closest_frame == true) {
cvm::log(std::string("Geometric path s(σ) will use the third closest frame to compute s_(m+1)\n"));
} else {
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m+1)\n"));
}
if (total_reference_frames < 2) {
cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) + " reference frames, but gspath requires at least 2 frames.\n");
return;
}
GeometricPathCV::GeometricPathBase<cvm::atom_pos, cvm::real, GeometricPathCV::path_sz::S>::initialize(atoms->size(), cvm::atom_pos(), total_reference_frames, use_second_closest_frame, use_third_closest_frame);
cvm::log(std::string("Geometric pathCV(s) is initialized.\n"));
cvm::log(std::string("Geometric pathCV(s) loaded ") + cvm::to_str(reference_frames.size()) + std::string(" frames.\n"));
}
void colvar::gspath::updateDistanceToReferenceFrames() {
computeDistanceToReferenceFrames(frame_distances);
}
void colvar::gspath::prepareVectors() {
size_t i_atom;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
// v1 = s_m - z
v1[i_atom] = reference_frames[min_frame_index_1][i_atom] - (*(comp_atoms[min_frame_index_1]))[i_atom].pos;
// v2 = z - s_(m-1)
v2[i_atom] = (*(comp_atoms[min_frame_index_2]))[i_atom].pos - reference_frames[min_frame_index_2][i_atom];
}
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
cvm::atom_pos reference_cog_1, reference_cog_2;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
reference_cog_1 += reference_frames[min_frame_index_1][i_atom];
reference_cog_2 += reference_frames[min_frame_index_2][i_atom];
}
reference_cog_1 /= cvm::real(reference_frames[min_frame_index_1].size());
reference_cog_2 /= cvm::real(reference_frames[min_frame_index_2].size());
std::vector<cvm::atom_pos> tmp_reference_frame_1(reference_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_frame_2(reference_frames[min_frame_index_2].size());
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_reference_frame_1[i_atom] = reference_frames[min_frame_index_1][i_atom] - reference_cog_1;
tmp_reference_frame_2[i_atom] = reference_frames[min_frame_index_2][i_atom] - reference_cog_2;
}
if (has_user_defined_fitting) {
cvm::atom_pos reference_fitting_cog_1, reference_fitting_cog_2;
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
reference_fitting_cog_1 += reference_fitting_frames[min_frame_index_1][i_atom];
reference_fitting_cog_2 += reference_fitting_frames[min_frame_index_2][i_atom];
}
reference_fitting_cog_1 /= cvm::real(reference_fitting_frames[min_frame_index_1].size());
reference_fitting_cog_2 /= cvm::real(reference_fitting_frames[min_frame_index_2].size());
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_1(reference_fitting_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_2(reference_fitting_frames[min_frame_index_2].size());
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
tmp_reference_fitting_frame_1[i_atom] = reference_fitting_frames[min_frame_index_1][i_atom] - reference_fitting_cog_1;
tmp_reference_fitting_frame_2[i_atom] = reference_fitting_frames[min_frame_index_2][i_atom] - reference_fitting_cog_2;
}
rot_v3.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_2);
} else {
rot_v3.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_2);
}
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
v3[i_atom] = rot_v3.q.rotate(tmp_reference_frame_1[i_atom]) - tmp_reference_frame_2[i_atom];
}
} else {
cvm::atom_pos reference_cog_1, reference_cog_3;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
reference_cog_1 += reference_frames[min_frame_index_1][i_atom];
reference_cog_3 += reference_frames[min_frame_index_3][i_atom];
}
reference_cog_1 /= cvm::real(reference_frames[min_frame_index_1].size());
reference_cog_3 /= cvm::real(reference_frames[min_frame_index_3].size());
std::vector<cvm::atom_pos> tmp_reference_frame_1(reference_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_frame_3(reference_frames[min_frame_index_3].size());
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_reference_frame_1[i_atom] = reference_frames[min_frame_index_1][i_atom] - reference_cog_1;
tmp_reference_frame_3[i_atom] = reference_frames[min_frame_index_3][i_atom] - reference_cog_3;
}
if (has_user_defined_fitting) {
cvm::atom_pos reference_fitting_cog_1, reference_fitting_cog_3;
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
reference_fitting_cog_1 += reference_fitting_frames[min_frame_index_1][i_atom];
reference_fitting_cog_3 += reference_fitting_frames[min_frame_index_3][i_atom];
}
reference_fitting_cog_1 /= cvm::real(reference_fitting_frames[min_frame_index_1].size());
reference_fitting_cog_3 /= cvm::real(reference_fitting_frames[min_frame_index_3].size());
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_1(reference_fitting_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_3(reference_fitting_frames[min_frame_index_3].size());
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
tmp_reference_fitting_frame_1[i_atom] = reference_fitting_frames[min_frame_index_1][i_atom] - reference_fitting_cog_1;
tmp_reference_fitting_frame_3[i_atom] = reference_fitting_frames[min_frame_index_3][i_atom] - reference_fitting_cog_3;
}
rot_v3.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_3);
} else {
rot_v3.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_3);
}
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
// v3 = s_(m+1) - s_m
v3[i_atom] = tmp_reference_frame_3[i_atom] - rot_v3.q.rotate(tmp_reference_frame_1[i_atom]);
}
}
}
void colvar::gspath::calc_value() {
computeValue();
x = s;
}
void colvar::gspath::calc_gradients() {
computeDerivatives();
cvm::rvector tmp_atom_grad_v1, tmp_atom_grad_v2;
// dS(v1, v2(r), v3) / dr = ∂S/∂v1 * dv1/dr + ∂S/∂v2 * dv2/dr
// dv1/dr = [fitting matrix 1][-1, ..., -1]
// dv2/dr = [fitting matrix 2][1, ..., 1]
// ∂S/∂v1 = ± (∂f/∂v1) / (2M)
// ∂S/∂v2 = ± (∂f/∂v2) / (2M)
// dS(v1, v2(r), v3) / dr = -1.0 * ± (∂f/∂v1) / (2M) + ± (∂f/∂v2) / (2M)
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_atom_grad_v1[0] = -1.0 * sign * 0.5 * dfdv1[i_atom][0] / M;
tmp_atom_grad_v1[1] = -1.0 * sign * 0.5 * dfdv1[i_atom][1] / M;
tmp_atom_grad_v1[2] = -1.0 * sign * 0.5 * dfdv1[i_atom][2] / M;
tmp_atom_grad_v2[0] = sign * 0.5 * dfdv2[i_atom][0] / M;
tmp_atom_grad_v2[1] = sign * 0.5 * dfdv2[i_atom][1] / M;
tmp_atom_grad_v2[2] = sign * 0.5 * dfdv2[i_atom][2] / M;
(*(comp_atoms[min_frame_index_1]))[i_atom].grad += tmp_atom_grad_v1;
(*(comp_atoms[min_frame_index_2]))[i_atom].grad += tmp_atom_grad_v2;
}
}
void colvar::gspath::apply_force(colvarvalue const &force) {
// The force applied to this CV is scalar type
cvm::real const &F = force.real_value;
(*(comp_atoms[min_frame_index_1])).apply_colvar_force(F);
(*(comp_atoms[min_frame_index_2])).apply_colvar_force(F);
}
colvar::gzpath::gzpath(std::string const &conf): CartesianBasedPath(conf) {
set_function_type("gzpath");
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
if (use_second_closest_frame == true) {
cvm::log(std::string("Geometric path z(σ) will use the second closest frame to compute s_(m-1)\n"));
} else {
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m-1)\n"));
}
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
if (use_third_closest_frame == true) {
cvm::log(std::string("Geometric path z(σ) will use the third closest frame to compute s_(m+1)\n"));
} else {
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m+1)\n"));
}
bool b_use_z_square = false;
get_keyval(conf, "useZsquare", b_use_z_square, false);
if (b_use_z_square == true) {
cvm::log(std::string("Geometric path z(σ) will use the square of distance from current frame to path compute z\n"));
}
if (total_reference_frames < 2) {
cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) + " reference frames, but gzpath requires at least 2 frames.\n");
return;
}
GeometricPathCV::GeometricPathBase<cvm::atom_pos, cvm::real, GeometricPathCV::path_sz::Z>::initialize(atoms->size(), cvm::atom_pos(), total_reference_frames, use_second_closest_frame, use_third_closest_frame, b_use_z_square);
// Logging
cvm::log(std::string("Geometric pathCV(z) is initialized.\n"));
cvm::log(std::string("Geometric pathCV(z) loaded ") + cvm::to_str(reference_frames.size()) + std::string(" frames.\n"));
}
void colvar::gzpath::updateDistanceToReferenceFrames() {
computeDistanceToReferenceFrames(frame_distances);
}
void colvar::gzpath::prepareVectors() {
cvm::atom_pos reference_cog_1, reference_cog_2;
size_t i_atom;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
reference_cog_1 += reference_frames[min_frame_index_1][i_atom];
reference_cog_2 += reference_frames[min_frame_index_2][i_atom];
}
reference_cog_1 /= cvm::real(reference_frames[min_frame_index_1].size());
reference_cog_2 /= cvm::real(reference_frames[min_frame_index_2].size());
std::vector<cvm::atom_pos> tmp_reference_frame_1(reference_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_frame_2(reference_frames[min_frame_index_2].size());
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_reference_frame_1[i_atom] = reference_frames[min_frame_index_1][i_atom] - reference_cog_1;
tmp_reference_frame_2[i_atom] = reference_frames[min_frame_index_2][i_atom] - reference_cog_2;
}
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_1;
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_2;
if (has_user_defined_fitting) {
cvm::atom_pos reference_fitting_cog_1, reference_fitting_cog_2;
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
reference_fitting_cog_1 += reference_fitting_frames[min_frame_index_1][i_atom];
reference_fitting_cog_2 += reference_fitting_frames[min_frame_index_2][i_atom];
}
reference_fitting_cog_1 /= cvm::real(reference_fitting_frames[min_frame_index_1].size());
reference_fitting_cog_2 /= cvm::real(reference_fitting_frames[min_frame_index_2].size());
tmp_reference_fitting_frame_1.resize(reference_fitting_frames[min_frame_index_1].size());
tmp_reference_fitting_frame_2.resize(reference_fitting_frames[min_frame_index_2].size());
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
tmp_reference_fitting_frame_1[i_atom] = reference_fitting_frames[min_frame_index_1][i_atom] - reference_fitting_cog_1;
tmp_reference_fitting_frame_2[i_atom] = reference_fitting_frames[min_frame_index_2][i_atom] - reference_fitting_cog_2;
}
rot_v4.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_2);
} else {
rot_v4.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_2);
}
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
v1[i_atom] = reference_frames[min_frame_index_1][i_atom] - (*(comp_atoms[min_frame_index_1]))[i_atom].pos;
v2[i_atom] = (*(comp_atoms[min_frame_index_2]))[i_atom].pos - reference_frames[min_frame_index_2][i_atom];
// v4 only computes in gzpath
// v4 = s_m - s_(m-1)
v4[i_atom] = rot_v4.q.rotate(tmp_reference_frame_1[i_atom]) - tmp_reference_frame_2[i_atom];
}
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
v3 = v4;
} else {
cvm::atom_pos reference_cog_3;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
reference_cog_3 += reference_frames[min_frame_index_3][i_atom];
}
reference_cog_3 /= cvm::real(reference_frames[min_frame_index_3].size());
std::vector<cvm::atom_pos> tmp_reference_frame_3(reference_frames[min_frame_index_3].size());
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_reference_frame_3[i_atom] = reference_frames[min_frame_index_3][i_atom] - reference_cog_3;
}
if (has_user_defined_fitting) {
cvm::atom_pos reference_fitting_cog_3;
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_3].size(); ++i_atom) {
reference_fitting_cog_3 += reference_fitting_frames[min_frame_index_3][i_atom];
}
reference_fitting_cog_3 /= cvm::real(reference_fitting_frames[min_frame_index_3].size());
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_3(reference_fitting_frames[min_frame_index_3].size());
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_3].size(); ++i_atom) {
tmp_reference_fitting_frame_3[i_atom] = reference_fitting_frames[min_frame_index_3][i_atom] - reference_fitting_cog_3;
}
rot_v3.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_3);
} else {
rot_v3.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_3);
}
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
// v3 = s_(m+1) - s_m
v3[i_atom] = tmp_reference_frame_3[i_atom] - rot_v3.q.rotate(tmp_reference_frame_1[i_atom]);
}
}
}
void colvar::gzpath::calc_value() {
computeValue();
x = z;
}
void colvar::gzpath::calc_gradients() {
computeDerivatives();
cvm::rvector tmp_atom_grad_v1, tmp_atom_grad_v2;
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_atom_grad_v1 = -1.0 * dzdv1[i_atom];
tmp_atom_grad_v2 = dzdv2[i_atom];
(*(comp_atoms[min_frame_index_1]))[i_atom].grad += tmp_atom_grad_v1;
(*(comp_atoms[min_frame_index_2]))[i_atom].grad += tmp_atom_grad_v2;
}
}
void colvar::gzpath::apply_force(colvarvalue const &force) {
// The force applied to this CV is scalar type
cvm::real const &F = force.real_value;
(*(comp_atoms[min_frame_index_1])).apply_colvar_force(F);
(*(comp_atoms[min_frame_index_2])).apply_colvar_force(F);
}
colvar::CVBasedPath::CVBasedPath(std::string const &conf): cvc(conf) {
// Lookup all available sub-cvcs
for (auto it_cv_map = colvar::get_global_cvc_map().begin(); it_cv_map != colvar::get_global_cvc_map().end(); ++it_cv_map) {
if (key_lookup(conf, it_cv_map->first.c_str())) {
std::vector<std::string> sub_cvc_confs;
get_key_string_multi_value(conf, it_cv_map->first.c_str(), sub_cvc_confs);
for (auto it_sub_cvc_conf = sub_cvc_confs.begin(); it_sub_cvc_conf != sub_cvc_confs.end(); ++it_sub_cvc_conf) {
cv.push_back((it_cv_map->second)(*(it_sub_cvc_conf)));
}
}
}
// Sort all sub CVs by their names
std::sort(cv.begin(), cv.end(), colvar::compare_cvc);
// Register atom groups and determine the colvar type for reference
std::vector<colvarvalue> tmp_cv;
for (auto it_sub_cv = cv.begin(); it_sub_cv != cv.end(); ++it_sub_cv) {
for (auto it_atom_group = (*it_sub_cv)->atom_groups.begin(); it_atom_group != (*it_sub_cv)->atom_groups.end(); ++it_atom_group) {
register_atom_group(*it_atom_group);
}
colvarvalue tmp_i_cv((*it_sub_cv)->value());
tmp_i_cv.reset();
tmp_cv.push_back(tmp_i_cv);
}
// Read path file
// Lookup all reference CV values
std::string path_filename;
get_keyval(conf, "pathFile", path_filename);
cvm::log(std::string("Reading path file: ") + path_filename + std::string("\n"));
auto &ifs_path = cvm::main()->proxy->input_stream(path_filename);
if (!ifs_path) {
return;
}
std::string line;
const std::string token(" ");
total_reference_frames = 0;
while (std::getline(ifs_path, line)) {
std::vector<std::string> fields;
split_string(line, token, fields);
size_t num_value_required = 0;
cvm::log(std::string("Reading reference frame ") + cvm::to_str(total_reference_frames + 1) + std::string("\n"));
for (size_t i_cv = 0; i_cv < tmp_cv.size(); ++i_cv) {
const size_t value_size = tmp_cv[i_cv].size();
num_value_required += value_size;
cvm::log(std::string("Reading CV ") + cv[i_cv]->name + std::string(" with ") + cvm::to_str(value_size) + std::string(" value(s)\n"));
if (num_value_required <= fields.size()) {
size_t start_index = num_value_required - value_size;
for (size_t i = start_index; i < num_value_required; ++i) {
tmp_cv[i_cv][i - start_index] = std::atof(fields[i].c_str());
cvm::log(cvm::to_str(tmp_cv[i_cv][i - start_index]));
}
} else {
cvm::error("Error: incorrect format of path file.\n");
return;
}
}
if (!fields.empty()) {
ref_cv.push_back(tmp_cv);
++total_reference_frames;
}
}
cvm::main()->proxy->close_input_stream(path_filename);
if (total_reference_frames <= 1) {
cvm::error("Error: there is only 1 or 0 reference frame, which doesn't constitute a path.\n");
return;
}
if (cv.size() == 0) {
cvm::error("Error: the CV " + name +
" expects one or more nesting components.\n");
return;
}
x.type(colvarvalue::type_scalar);
use_explicit_gradients = true;
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
if (!cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
use_explicit_gradients = false;
}
}
if (!use_explicit_gradients) {
disable(f_cvc_explicit_gradient);
}
}
void colvar::CVBasedPath::computeDistanceToReferenceFrames(std::vector<cvm::real>& result) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
cv[i_cv]->calc_value();
}
for (size_t i_frame = 0; i_frame < ref_cv.size(); ++i_frame) {
cvm::real rmsd_i = 0.0;
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
colvarvalue ref_cv_value(ref_cv[i_frame][i_cv]);
colvarvalue current_cv_value(cv[i_cv]->value());
// polynomial combination allowed
if (current_cv_value.type() == colvarvalue::type_scalar) {
// wrapping is already in dist2
rmsd_i += cv[i_cv]->dist2(cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np)), ref_cv_value.real_value);
} else {
rmsd_i += cv[i_cv]->dist2(cv[i_cv]->sup_coeff * current_cv_value, ref_cv_value);
}
}
rmsd_i /= cvm::real(cv.size());
rmsd_i = cvm::sqrt(rmsd_i);
result[i_frame] = rmsd_i;
}
}
void colvar::CVBasedPath::computeDistanceBetweenReferenceFrames(std::vector<cvm::real>& result) const {
if (ref_cv.size() < 2) return;
for (size_t i_frame = 1; i_frame < ref_cv.size(); ++i_frame) {
cvm::real dist_ij = 0.0;
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
colvarvalue ref_cv_value(ref_cv[i_frame][i_cv]);
colvarvalue prev_ref_cv_value(ref_cv[i_frame-1][i_cv]);
dist_ij += cv[i_cv]->dist2(ref_cv_value, prev_ref_cv_value);
}
dist_ij = cvm::sqrt(dist_ij);
result[i_frame-1] = dist_ij;
}
}
cvm::real colvar::CVBasedPath::getPolynomialFactorOfCVGradient(size_t i_cv) const {
cvm::real factor_polynomial = 1.0;
if (cv[i_cv]->value().type() == colvarvalue::type_scalar) {
factor_polynomial = cv[i_cv]->sup_coeff * cv[i_cv]->sup_np * cvm::pow(cv[i_cv]->value().real_value, cv[i_cv]->sup_np - 1);
} else {
factor_polynomial = cv[i_cv]->sup_coeff;
}
return factor_polynomial;
}
colvar::CVBasedPath::~CVBasedPath() {
// Recall the steps we initialize the sub-CVCs:
// 1. Lookup all sub-CVCs and then register the atom groups for sub-CVCs
// in their constructors;
// 2. Iterate over all sub-CVCs, get the pointers of their atom groups
// groups, and register again in the parent (current) CVC.
// That being said, the atom groups become children of the sub-CVCs at
// first, and then become children of the parent CVC.
// So, to destruct this class (parent CVC class), we need to remove the
// dependencies of the atom groups to the parent CVC at first.
remove_all_children();
// Then we remove the dependencies of the atom groups to the sub-CVCs
// in their destructors.
for (auto it = cv.begin(); it != cv.end(); ++it) {
delete (*it);
}
// The last step is cleaning up the list of atom groups.
atom_groups.clear();
}
colvar::gspathCV::gspathCV(std::string const &conf): CVBasedPath(conf) {
set_function_type("gspathCV");
cvm::log(std::string("Total number of frames: ") + cvm::to_str(total_reference_frames) + std::string("\n"));
// Initialize variables for future calculation
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
if (use_second_closest_frame == true) {
cvm::log(std::string("Geometric path s(σ) will use the second closest frame to compute s_(m-1)\n"));
} else {
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m-1)\n"));
}
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
if (use_third_closest_frame == true) {
cvm::log(std::string("Geometric path s(σ) will use the third closest frame to compute s_(m+1)\n"));
} else {
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m+1)\n"));
}
if (total_reference_frames < 2) {
cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) + " reference frames, but gspathCV requires at least 2 frames.\n");
return;
}
GeometricPathCV::GeometricPathBase<colvarvalue, cvm::real, GeometricPathCV::path_sz::S>::initialize(cv.size(), ref_cv[0], total_reference_frames, use_second_closest_frame, use_third_closest_frame);
x.type(colvarvalue::type_scalar);
}
colvar::gspathCV::~gspathCV() {}
void colvar::gspathCV::updateDistanceToReferenceFrames() {
computeDistanceToReferenceFrames(frame_distances);
}
void colvar::gspathCV::prepareVectors() {
// Compute v1, v2 and v3
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// values of sub-cvc are computed in update_distances
// cv[i_cv]->calc_value();
colvarvalue f1_ref_cv_i_value(ref_cv[min_frame_index_1][i_cv]);
colvarvalue f2_ref_cv_i_value(ref_cv[min_frame_index_2][i_cv]);
colvarvalue current_cv_value(cv[i_cv]->value());
// polynomial combination allowed
if (current_cv_value.type() == colvarvalue::type_scalar) {
v1[i_cv] = f1_ref_cv_i_value.real_value - cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np));
v2[i_cv] = cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np)) - f2_ref_cv_i_value.real_value;
} else {
v1[i_cv] = f1_ref_cv_i_value - cv[i_cv]->sup_coeff * current_cv_value;
v2[i_cv] = cv[i_cv]->sup_coeff * current_cv_value - f2_ref_cv_i_value;
}
cv[i_cv]->wrap(v1[i_cv]);
cv[i_cv]->wrap(v2[i_cv]);
}
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
v3[i_cv] = ref_cv[min_frame_index_1][i_cv] - ref_cv[min_frame_index_2][i_cv];
cv[i_cv]->wrap(v3[i_cv]);
}
} else {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
v3[i_cv] = ref_cv[min_frame_index_3][i_cv] - ref_cv[min_frame_index_1][i_cv];
cv[i_cv]->wrap(v3[i_cv]);
}
}
}
void colvar::gspathCV::calc_value() {
computeValue();
x = s;
}
void colvar::gspathCV::calc_gradients() {
computeDerivatives();
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// No matter whether the i-th cv uses implicit gradient, compute it first.
cv[i_cv]->calc_gradients();
// If the gradient is not implicit, then add the gradients to its atom groups
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
// Temporary variables storing gradients
colvarvalue tmp_cv_grad_v1(cv[i_cv]->value());
colvarvalue tmp_cv_grad_v2(cv[i_cv]->value());
// Compute factors for polynomial combinations
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
// Loop over all elements of the corresponding colvar value
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
// ds/dz, z = vector of CVs
tmp_cv_grad_v1[j_elem] = -1.0 * sign * 0.5 * dfdv1[i_cv][j_elem] / M;
tmp_cv_grad_v2[j_elem] = sign * 0.5 * dfdv2[i_cv][j_elem] / M;
// Apply the gradients to the atom groups in i-th cv
// Loop over all atom groups
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
// Loop over all atoms in the k-th atom group
for (size_t l_atom = 0; l_atom < (cv[i_cv]->atom_groups)[k_ag]->size(); ++l_atom) {
// Chain rule
(*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad = factor_polynomial * ((*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v1[j_elem] + (*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v2[j_elem]);
}
}
}
}
}
}
void colvar::gspathCV::apply_force(colvarvalue const &force) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// If this CV us explicit gradients, then atomic gradients is already calculated
// We can apply the force to atom groups directly
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
(cv[i_cv]->atom_groups)[k_ag]->apply_colvar_force(force.real_value);
}
} else {
// Temporary variables storing gradients
colvarvalue tmp_cv_grad_v1(cv[i_cv]->value());
colvarvalue tmp_cv_grad_v2(cv[i_cv]->value());
// Compute factors for polynomial combinations
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
// ds/dz, z = vector of CVs
tmp_cv_grad_v1[j_elem] = -1.0 * sign * 0.5 * dfdv1[i_cv][j_elem] / M;
tmp_cv_grad_v2[j_elem] = sign * 0.5 * dfdv2[i_cv][j_elem] / M;
}
colvarvalue cv_force = force.real_value * factor_polynomial * (tmp_cv_grad_v1 + tmp_cv_grad_v2);
cv[i_cv]->apply_force(cv_force);
}
}
}
colvar::gzpathCV::gzpathCV(std::string const &conf): CVBasedPath(conf) {
set_function_type("gzpathCV");
cvm::log(std::string("Total number of frames: ") + cvm::to_str(total_reference_frames) + std::string("\n"));
// Initialize variables for future calculation
M = cvm::real(total_reference_frames - 1);
m = 1.0;
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
if (use_second_closest_frame == true) {
cvm::log(std::string("Geometric path z(σ) will use the second closest frame to compute s_(m-1)\n"));
} else {
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m-1)\n"));
}
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
if (use_third_closest_frame == true) {
cvm::log(std::string("Geometric path z(σ) will use the third closest frame to compute s_(m+1)\n"));
} else {
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m+1)\n"));
}
bool b_use_z_square = false;
get_keyval(conf, "useZsquare", b_use_z_square, false);
if (b_use_z_square == true) {
cvm::log(std::string("Geometric path z(σ) will use the square of distance from current frame to path compute z\n"));
}
if (total_reference_frames < 2) {
cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) + " reference frames, but gzpathCV requires at least 2 frames.\n");
return;
}
GeometricPathCV::GeometricPathBase<colvarvalue, cvm::real, GeometricPathCV::path_sz::Z>::initialize(cv.size(), ref_cv[0], total_reference_frames, use_second_closest_frame, use_third_closest_frame, b_use_z_square);
x.type(colvarvalue::type_scalar);
}
colvar::gzpathCV::~gzpathCV() {
}
void colvar::gzpathCV::updateDistanceToReferenceFrames() {
computeDistanceToReferenceFrames(frame_distances);
}
void colvar::gzpathCV::prepareVectors() {
// Compute v1, v2 and v3
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// values of sub-cvc are computed in update_distances
// cv[i_cv]->calc_value();
colvarvalue f1_ref_cv_i_value(ref_cv[min_frame_index_1][i_cv]);
colvarvalue f2_ref_cv_i_value(ref_cv[min_frame_index_2][i_cv]);
colvarvalue current_cv_value(cv[i_cv]->value());
// polynomial combination allowed
if (current_cv_value.type() == colvarvalue::type_scalar) {
v1[i_cv] = f1_ref_cv_i_value.real_value - cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np));
v2[i_cv] = cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np)) - f2_ref_cv_i_value.real_value;
} else {
v1[i_cv] = f1_ref_cv_i_value - cv[i_cv]->sup_coeff * current_cv_value;
v2[i_cv] = cv[i_cv]->sup_coeff * current_cv_value - f2_ref_cv_i_value;
}
v4[i_cv] = f1_ref_cv_i_value - f2_ref_cv_i_value;
cv[i_cv]->wrap(v1[i_cv]);
cv[i_cv]->wrap(v2[i_cv]);
cv[i_cv]->wrap(v4[i_cv]);
}
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
v3[i_cv] = ref_cv[min_frame_index_1][i_cv] - ref_cv[min_frame_index_2][i_cv];
cv[i_cv]->wrap(v3[i_cv]);
}
} else {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
v3[i_cv] = ref_cv[min_frame_index_3][i_cv] - ref_cv[min_frame_index_1][i_cv];
cv[i_cv]->wrap(v3[i_cv]);
}
}
}
void colvar::gzpathCV::calc_value() {
computeValue();
x = z;
}
void colvar::gzpathCV::calc_gradients() {
computeDerivatives();
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// No matter whether the i-th cv uses implicit gradient, compute it first.
cv[i_cv]->calc_gradients();
// If the gradient is not implicit, then add the gradients to its atom groups
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
// Temporary variables storing gradients
colvarvalue tmp_cv_grad_v1 = -1.0 * dzdv1[i_cv];
colvarvalue tmp_cv_grad_v2 = 1.0 * dzdv2[i_cv];
// Compute factors for polynomial combinations
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
// Apply the gradients to the atom groups in i-th cv
// Loop over all atom groups
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
// Loop over all atoms in the k-th atom group
for (size_t l_atom = 0; l_atom < (cv[i_cv]->atom_groups)[k_ag]->size(); ++l_atom) {
// Chain rule
(*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad = factor_polynomial * ((*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v1[j_elem] + (*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v2[j_elem]);
}
}
}
}
}
}
void colvar::gzpathCV::apply_force(colvarvalue const &force) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// If this CV us explicit gradients, then atomic gradients is already calculated
// We can apply the force to atom groups directly
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
(cv[i_cv]->atom_groups)[k_ag]->apply_colvar_force(force.real_value);
}
} else {
colvarvalue tmp_cv_grad_v1 = -1.0 * dzdv1[i_cv];
colvarvalue tmp_cv_grad_v2 = 1.0 * dzdv2[i_cv];
// Temporary variables storing gradients
// Compute factors for polynomial combinations
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
colvarvalue cv_force = force.real_value * factor_polynomial * (tmp_cv_grad_v1 + tmp_cv_grad_v2);
cv[i_cv]->apply_force(cv_force);
}
}
}
#endif