Files
lammps/lib/colvars/colvarcomp_combination.cpp
Giacomo Fiorin 1220bea011 Update Colvars to version 2022-05-09
This update includes one new feature (neural-network based collective
variables), several small enhancements (including an automatic definition of
grid boundaries for angle-based CVs, and a normalization option for
eigenvector-based CVs), bugfixes and documentation improvements.

Usage information for specific features included in the Colvars library
(i.e. not just the library as a whole) is now also reported to the screen or
LAMMPS logfile (as is done already in other LAMMPS classes).

Notable to LAMMPS code development are the removals of duplicated code and of
ambiguously-named preprocessor defines in the Colvars headers.  Since the
last PR, the existing regression tests have also been running automatically
via GitHub Actions.

The following pull requests in the Colvars repository are relevant to LAMMPS:

- 475 Remove fatal error condition
  https://github.com/Colvars/colvars/pull/475 (@jhenin, @giacomofiorin)

- 474 Allow normalizing eigenvector vector components to deal with unit change
  https://github.com/Colvars/colvars/pull/474 (@giacomofiorin, @jhenin)

- 470 Better error handling in the initialization of NeuralNetwork CV
  https://github.com/Colvars/colvars/pull/470 (@HanatoK)

- 468 Add examples of histogram configuration, with and without explicit grid parameters
  https://github.com/Colvars/colvars/pull/468 (@giacomofiorin)

- 464 Fix #463 using more fine-grained features
  https://github.com/Colvars/colvars/pull/464 (@jhenin, @giacomofiorin)

- 447 [RFC] New option "scaledBiasingForce" for colvarbias
  https://github.com/Colvars/colvars/pull/447 (@HanatoK, @jhenin)

- 444 [RFC] Implementation of dense neural network as CV
  https://github.com/Colvars/colvars/pull/444 (@HanatoK, @giacomofiorin, @jhenin)

- 443 Fix explicit gradient dependency of sub-CVs
  https://github.com/Colvars/colvars/pull/443 (@HanatoK, @jhenin)

- 442 Persistent bias count
  https://github.com/Colvars/colvars/pull/442 (@jhenin, @giacomofiorin)

- 437 Return type of bias from scripting interface
  https://github.com/Colvars/colvars/pull/437 (@giacomofiorin)

- 434 More flexible use of boundaries from colvars by grids
  https://github.com/Colvars/colvars/pull/434 (@jhenin)

- 433 Prevent double-free in linearCombination
  https://github.com/Colvars/colvars/pull/433 (@HanatoK)

- 428 More complete documentation for index file format (NDX)
  https://github.com/Colvars/colvars/pull/428 (@giacomofiorin)

- 426 Integrate functional version of backup_file() into base proxy class
  https://github.com/Colvars/colvars/pull/426 (@giacomofiorin)

- 424 Track CVC inheritance when documenting feature usage
  https://github.com/Colvars/colvars/pull/424 (@giacomofiorin)

- 419 Generate citation report while running computations
  https://github.com/Colvars/colvars/pull/419 (@giacomofiorin, @jhenin)

- 415 Rebin metadynamics bias from explicit hills when available
  https://github.com/Colvars/colvars/pull/415 (@giacomofiorin)

- 312 Ignore a keyword if it has content to the left of it (regardless of braces)
  https://github.com/Colvars/colvars/pull/312 (@giacomofiorin)

Authors: @giacomofiorin, @HanatoK, @jhenin
2022-05-10 11:24:54 -04:00

323 lines
14 KiB
C++

#if (__cplusplus >= 201103L)
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/Colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#include "colvarcomp.h"
colvar::linearCombination::linearCombination(std::string const &conf): cvc(conf) {
// Lookup all available sub-cvcs
for (auto it_cv_map = colvar::get_global_cvc_map().begin(); it_cv_map != colvar::get_global_cvc_map().end(); ++it_cv_map) {
if (key_lookup(conf, it_cv_map->first.c_str())) {
std::vector<std::string> sub_cvc_confs;
get_key_string_multi_value(conf, it_cv_map->first.c_str(), sub_cvc_confs);
for (auto it_sub_cvc_conf = sub_cvc_confs.begin(); it_sub_cvc_conf != sub_cvc_confs.end(); ++it_sub_cvc_conf) {
cv.push_back((it_cv_map->second)(*(it_sub_cvc_conf)));
}
}
}
// Sort all sub CVs by their names
std::sort(cv.begin(), cv.end(), colvar::compare_cvc);
for (auto it_sub_cv = cv.begin(); it_sub_cv != cv.end(); ++it_sub_cv) {
for (auto it_atom_group = (*it_sub_cv)->atom_groups.begin(); it_atom_group != (*it_sub_cv)->atom_groups.end(); ++it_atom_group) {
register_atom_group(*it_atom_group);
}
}
// Show useful error messages and prevent crashes if no sub CVC is found
if (cv.size() == 0) {
cvm::error("Error: the CV " + name +
" expects one or more nesting components.\n");
return;
} else {
// TODO: Maybe we can add an option to allow mixing scalar and vector types,
// but that's a bit complicated so we just require a consistent type
// of nesting CVs.
x.type(cv[0]->value());
x.reset();
for (size_t i_cv = 1; i_cv < cv.size(); ++i_cv) {
const auto type_i = cv[i_cv]->value().type();
if (type_i != x.type()) {
cvm::error("Error: the type of sub-CVC " + cv[i_cv]->name +
" is " + colvarvalue::type_desc(type_i) + ", which is "
"different to the type of the first sub-CVC. Currently "
"only sub-CVCs of the same type are supported to be "
"nested.\n");
return;
}
}
}
use_explicit_gradients = true;
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
if (!cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
use_explicit_gradients = false;
}
}
if (!use_explicit_gradients) {
disable(f_cvc_explicit_gradient);
}
}
cvm::real colvar::linearCombination::getPolynomialFactorOfCVGradient(size_t i_cv) const {
cvm::real factor_polynomial = 1.0;
if (cv[i_cv]->value().type() == colvarvalue::type_scalar) {
factor_polynomial = cv[i_cv]->sup_coeff * cv[i_cv]->sup_np * cvm::pow(cv[i_cv]->value().real_value, cv[i_cv]->sup_np - 1);
} else {
factor_polynomial = cv[i_cv]->sup_coeff;
}
return factor_polynomial;
}
colvar::linearCombination::~linearCombination() {
// Recall the steps we initialize the sub-CVCs:
// 1. Lookup all sub-CVCs and then register the atom groups for sub-CVCs
// in their constructors;
// 2. Iterate over all sub-CVCs, get the pointers of their atom groups
// groups, and register again in the parent (current) CVC.
// That being said, the atom groups become children of the sub-CVCs at
// first, and then become children of the parent CVC.
// So, to destruct this class (parent CVC class), we need to remove the
// dependencies of the atom groups to the parent CVC at first.
remove_all_children();
// Then we remove the dependencies of the atom groups to the sub-CVCs
// in their destructors.
for (auto it = cv.begin(); it != cv.end(); ++it) {
delete (*it);
}
// The last step is cleaning up the list of atom groups.
atom_groups.clear();
}
void colvar::linearCombination::calc_value() {
x.reset();
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
cv[i_cv]->calc_value();
colvarvalue current_cv_value(cv[i_cv]->value());
// polynomial combination allowed
if (current_cv_value.type() == colvarvalue::type_scalar) {
x += cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np));
} else {
x += cv[i_cv]->sup_coeff * current_cv_value;
}
}
}
void colvar::linearCombination::calc_gradients() {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
cv[i_cv]->calc_gradients();
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
for (size_t l_atom = 0; l_atom < (cv[i_cv]->atom_groups)[k_ag]->size(); ++l_atom) {
(*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad = factor_polynomial * (*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad;
}
}
}
}
}
}
void colvar::linearCombination::apply_force(colvarvalue const &force) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// If this CV us explicit gradients, then atomic gradients is already calculated
// We can apply the force to atom groups directly
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
(cv[i_cv]->atom_groups)[k_ag]->apply_colvar_force(force.real_value);
}
} else {
// Compute factors for polynomial combinations
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
colvarvalue cv_force = force.real_value * factor_polynomial;
cv[i_cv]->apply_force(cv_force);
}
}
}
colvar::customColvar::customColvar(std::string const &conf): linearCombination(conf) {
use_custom_function = false;
// code swipe from colvar::init_custom_function
#ifdef LEPTON
std::string expr_in, expr;
std::vector<Lepton::ParsedExpression> pexprs;
Lepton::ParsedExpression pexpr;
double *ref;
size_t pos = 0; // current position in config string
if (key_lookup(conf, "customFunction", &expr_in, &pos)) {
use_custom_function = true;
cvm::log("This colvar uses a custom function.\n");
do {
expr = expr_in;
if (cvm::debug())
cvm::log("Parsing expression \"" + expr + "\".\n");
try {
pexpr = Lepton::Parser::parse(expr);
pexprs.push_back(pexpr);
} catch (...) {
cvm::error("Error parsing expression \"" + expr + "\".\n", COLVARS_INPUT_ERROR);
}
try {
value_evaluators.push_back(new Lepton::CompiledExpression(pexpr.createCompiledExpression()));
// Define variables for cvc values
for (size_t i = 0; i < cv.size(); ++i) {
for (size_t j = 0; j < cv[i]->value().size(); ++j) {
std::string vn = cv[i]->name + (cv[i]->value().size() > 1 ? cvm::to_str(j+1) : "");
try {
ref = &value_evaluators.back()->getVariableReference(vn);
} catch (...) {
ref = &dev_null;
cvm::log("Warning: Variable " + vn + " is absent from expression \"" + expr + "\".\n");
}
value_eval_var_refs.push_back(ref);
}
}
} catch (...) {
cvm::error("Error compiling expression \"" + expr + "\".\n", COLVARS_INPUT_ERROR);
}
} while (key_lookup(conf, "customFunction", &expr_in, &pos));
// Now define derivative with respect to each scalar sub-component
for (size_t i = 0; i < cv.size(); ++i) {
for (size_t j = 0; j < cv[i]->value().size(); ++j) {
std::string vn = cv[i]->name + (cv[i]->value().size() > 1 ? cvm::to_str(j+1) : "");
for (size_t c = 0; c < pexprs.size(); ++c) {
gradient_evaluators.push_back(new Lepton::CompiledExpression(pexprs[c].differentiate(vn).createCompiledExpression()));
for (size_t k = 0; k < cv.size(); ++k) {
for (size_t l = 0; l < cv[k]->value().size(); l++) {
std::string vvn = cv[k]->name + (cv[k]->value().size() > 1 ? cvm::to_str(l+1) : "");
try {
ref = &gradient_evaluators.back()->getVariableReference(vvn);
} catch (...) {
cvm::log("Warning: Variable " + vvn + " is absent from derivative of \"" + expr + "\" wrt " + vn + ".\n");
ref = &dev_null;
}
grad_eval_var_refs.push_back(ref);
}
}
}
}
}
if (value_evaluators.size() == 0) {
cvm::error("Error: no custom function defined.\n", COLVARS_INPUT_ERROR);
}
if (value_evaluators.size() != 1) {
x.type(colvarvalue::type_vector);
} else {
x.type(colvarvalue::type_scalar);
}
} else {
cvm::log(std::string{"Warning: no customFunction specified.\n"});
cvm::log(std::string{"Warning: use linear combination instead.\n"});
}
#endif
}
colvar::customColvar::~customColvar() {
#ifdef LEPTON
for (size_t i = 0; i < value_evaluators.size(); ++i) {
if (value_evaluators[i] != nullptr) delete value_evaluators[i];
}
for (size_t i = 0; i < gradient_evaluators.size(); ++i) {
if (gradient_evaluators[i] != nullptr) delete gradient_evaluators[i];
}
#endif
}
void colvar::customColvar::calc_value() {
#ifdef LEPTON
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
cv[i_cv]->calc_value();
}
x.reset();
size_t l = 0;
for (size_t i = 0; i < x.size(); ++i) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
const colvarvalue& current_cv_value = cv[i_cv]->value();
for (size_t j_elem = 0; j_elem < current_cv_value.size(); ++j_elem) {
if (current_cv_value.type() == colvarvalue::type_scalar) {
*(value_eval_var_refs[l++]) = cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np));
} else {
*(value_eval_var_refs[l++]) = cv[i_cv]->sup_coeff * current_cv_value[j_elem];
}
}
}
x[i] = value_evaluators[i]->evaluate();
}
#endif
if (!use_custom_function) {
colvar::linearCombination::calc_value();
}
}
void colvar::customColvar::calc_gradients() {
#ifdef LEPTON
size_t r = 0; // index in the vector of variable references
size_t e = 0; // index of the gradient evaluator
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) { // for each CV
cv[i_cv]->calc_gradients();
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
const colvarvalue& current_cv_value = cv[i_cv]->value();
const cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
for (size_t j_elem = 0; j_elem < current_cv_value.size(); ++j_elem) { // for each element in this CV
for (size_t c = 0; c < x.size(); ++c) { // for each custom function expression
for (size_t k = 0; k < cv.size(); ++k) { // this is required since we need to feed all CV values to this expression
const cvm::real factor_polynomial_k = getPolynomialFactorOfCVGradient(k);
for (size_t l = 0; l < cv[k]->value().size(); ++l) {
*(grad_eval_var_refs[r++]) = factor_polynomial_k * cv[k]->value()[l];
}
}
const double expr_grad = gradient_evaluators[e++]->evaluate();
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
for (size_t l_atom = 0; l_atom < (cv[i_cv]->atom_groups)[k_ag]->size(); ++l_atom) {
(*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad = expr_grad * factor_polynomial * (*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad;
}
}
}
}
}
}
#endif
if (!use_custom_function) {
colvar::linearCombination::calc_gradients();
}
}
void colvar::customColvar::apply_force(colvarvalue const &force) {
#ifdef LEPTON
size_t r = 0; // index in the vector of variable references
size_t e = 0; // index of the gradient evaluator
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// If this CV us explicit gradients, then atomic gradients is already calculated
// We can apply the force to atom groups directly
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
(cv[i_cv]->atom_groups)[k_ag]->apply_colvar_force(force.real_value);
}
} else {
const colvarvalue& current_cv_value = cv[i_cv]->value();
colvarvalue cv_force(current_cv_value.type());
const cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
for (size_t j_elem = 0; j_elem < current_cv_value.size(); ++j_elem) {
for (size_t c = 0; c < x.size(); ++c) {
for (size_t k = 0; k < cv.size(); ++k) {
const cvm::real factor_polynomial_k = getPolynomialFactorOfCVGradient(k);
for (size_t l = 0; l < cv[k]->value().size(); ++l) {
*(grad_eval_var_refs[r++]) = factor_polynomial_k * cv[k]->value()[l];
}
}
cv_force[j_elem] += factor_polynomial * gradient_evaluators[e++]->evaluate() * force.real_value;
}
}
cv[i_cv]->apply_force(cv_force);
}
}
#endif
if (!use_custom_function) {
colvar::linearCombination::apply_force(force);
}
}
#endif // __cplusplus >= 201103L