Files
lammps/lib/gpu/lal_sph_taitwater.cu
2024-03-18 13:27:21 -05:00

370 lines
13 KiB
Plaintext

// **************************************************************************
// sph_taitwater.cu
// -------------------
// Trung Dac Nguyen (U Chicago)
//
// Device code for acceleration of the sph/taitwater pair style
//
// __________________________________________________________________________
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
// __________________________________________________________________________
//
// begin : September 2023
// email : ndactrung@gmail.com
// ***************************************************************************
#if defined(NV_KERNEL) || defined(USE_HIP)
#include "lal_aux_fun1.h"
#ifndef _DOUBLE_DOUBLE
_texture( pos_tex,float4);
_texture( vel_tex,float4);
#else
_texture_2d( pos_tex,int4);
_texture_2d( vel_tex,int4);
#endif
#else
#define pos_tex x_
#define vel_tex v_
#endif
#if (SHUFFLE_AVAIL == 0)
#define store_drhoE(drhoEacc, ii, inum, tid, t_per_atom, offset, i, drhoE) \
if (t_per_atom>1) { \
simdsync(); \
simd_reduce_add2(t_per_atom, red_acc, offset, tid, \
drhoEacc.x, drhoEacc.y); \
} \
if (offset==0 && ii<inum) { \
drhoE[i]=drhoEacc.x; \
drhoE[i+inum]=drhoEacc.y; \
}
#else
#define store_drhoE(drhoEacc, ii, inum, tid, t_per_atom, offset, i, drhoE) \
if (t_per_atom>1) { \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
drhoEacc.x += shfl_down(drhoEacc.x, s, t_per_atom); \
drhoEacc.y += shfl_down(drhoEacc.y, s, t_per_atom); \
} \
} \
if (offset==0 && ii<inum) { \
drhoE[i]=drhoEacc.x; \
drhoE[i+inum]=drhoEacc.y; \
}
#endif
__kernel void k_sph_taitwater(const __global numtyp4 *restrict x_,
const __global numtyp4 *restrict extra,
const __global numtyp4 *restrict coeff,
const __global numtyp4 *restrict coeff2,
const int lj_types,
const __global numtyp *restrict sp_lj,
const __global int * dev_nbor,
const __global int * dev_packed,
__global acctyp3 *restrict ans,
__global acctyp *restrict engv,
__global acctyp *restrict drhoE,
const int eflag, const int vflag,
const int inum, const int nbor_pitch,
const __global numtyp4 *restrict v_,
const int dimension, const int t_per_atom) {
int tid, ii, offset, i;
atom_info(t_per_atom,ii,tid,offset);
int n_stride;
local_allocate_store_pair();
acctyp3 f;
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
acctyp energy, virial[6];
if (EVFLAG) {
energy=(acctyp)0;
for (int i=0; i<6; i++) virial[i]=(acctyp)0;
}
acctyp2 drhoEacc;
drhoEacc.x = drhoEacc.y = (acctyp)0;
if (ii<inum) {
int numj, nbor, nbor_end;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,nbor_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
int itype=ix.w;
numtyp mass_itype = coeff2[itype].x;
numtyp rho0_itype = coeff2[itype].y;
numtyp soundspeed_itype = coeff2[itype].z;
numtyp B_itype = coeff2[itype].w;
numtyp4 iv; fetch4(iv,i,vel_tex); //v_[i];
const numtyp4 extrai = extra[i];
numtyp rhoi = extrai.x;
// compute pressure of atom i with Tait EOS
numtyp tmp = rhoi / rho0_itype;
numtyp fi = tmp * tmp * tmp;
fi = B_itype * (fi * fi * tmp - (numtyp)1.0);
fi /= (rhoi * rhoi);
for ( ; nbor<nbor_end; nbor+=n_stride) {
ucl_prefetch(dev_packed+nbor+n_stride);
int j=dev_packed[nbor];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
int jtype=jx.w;
numtyp4 jv; fetch4(jv,j,vel_tex); //v_[j];
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
int mtype=itype*lj_types+jtype;
if (rsq<coeff[mtype].z) { // cutsq[itype][jtype]
const numtyp coeffx=coeff[mtype].x; // viscosity[itype][jtype]
const numtyp coeffy=coeff[mtype].y; // cut[itype][jtype]
numtyp mass_jtype = coeff2[jtype].x;
numtyp rho0_jtype = coeff2[jtype].y;
numtyp soundspeed_jtype = coeff2[jtype].z;
numtyp B_jtype = coeff2[jtype].w;
const numtyp4 extraj = extra[j];
numtyp rhoj = extraj.x;
numtyp h = coeffy; // cut[itype][jtype]
numtyp ih = ucl_recip(h); // (numtyp)1.0 / h;
numtyp ihsq = ih * ih;
numtyp wfd = h - ucl_sqrt(rsq);
if (dimension == 3) {
// Lucy Kernel, 3d
wfd = (numtyp)-25.066903536973515383 * wfd * wfd * ihsq * ihsq * ihsq * ih;
} else {
// Lucy Kernel, 2d
wfd = (numtyp)-19.098593171027440292 * wfd * wfd * ihsq * ihsq * ihsq;
}
// compute pressure of atom j with Tait EOS
numtyp tmp = rhoj / rho0_jtype;
numtyp fj = tmp * tmp * tmp;
fj = B_jtype * (fj * fj * tmp - (numtyp)1.0);
fj /= (rhoj * rhoj);
// dot product of velocity delta and distance vector
numtyp delvx = iv.x - jv.x;
numtyp delvy = iv.y - jv.y;
numtyp delvz = iv.z - jv.z;
numtyp delVdotDelR = delx*delvx + dely*delvy + delz*delvz;
// artificial viscosity (Monaghan 1992)
numtyp fvisc = (numtyp)0;
if (delVdotDelR < (numtyp)0) {
numtyp mu = h * delVdotDelR / (rsq + (numtyp)0.01 * h * h);
fvisc = -coeffx * (soundspeed_itype + soundspeed_jtype) * mu / (rhoi + rhoj);
}
// total pair force & thermal energy increment
numtyp force = -mass_itype * mass_jtype * (fi + fj + fvisc) * wfd;
numtyp deltaE = (numtyp)-0.5 * force * delVdotDelR;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
// and change in density, drho[i]
drhoEacc.x += mass_jtype * delVdotDelR * wfd;
// change in thermal energy, desph[i]
drhoEacc.y += deltaE;
if (EVFLAG && vflag) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
} // if ii
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
ans,engv);
store_drhoE(drhoEacc,ii,inum,tid,t_per_atom,offset,i,drhoE);
}
__kernel void k_sph_taitwater_fast(const __global numtyp4 *restrict x_,
const __global numtyp4 *restrict extra,
const __global numtyp4 *restrict coeff_in,
const __global numtyp4 *restrict coeff2_in,
const __global numtyp *restrict sp_lj_in,
const __global int * dev_nbor,
const __global int * dev_packed,
__global acctyp3 *restrict ans,
__global acctyp *restrict engv,
__global acctyp *restrict drhoE,
const int eflag, const int vflag,
const int inum, const int nbor_pitch,
const __global numtyp4 *restrict v_,
const int dimension, const int t_per_atom) {
int tid, ii, offset, i;
atom_info(t_per_atom,ii,tid,offset);
#ifndef ONETYPE
__local numtyp4 coeff[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
__local numtyp4 coeff2[MAX_SHARED_TYPES];
if (tid<MAX_SHARED_TYPES) {
coeff2[tid] = coeff2_in[tid];
}
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
coeff[tid]=coeff_in[tid];
}
__syncthreads();
#else
const numtyp coeffx=coeff_in[ONETYPE].x; // viscosity[itype][jtype]
const numtyp coeffy=coeff_in[ONETYPE].y; // cut[itype][jtype]
const numtyp cutsq_p=coeff_in[ONETYPE].z; // cutsq[itype][jtype]
#endif
int n_stride;
local_allocate_store_pair();
acctyp3 f;
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
acctyp energy, virial[6];
if (EVFLAG) {
energy=(acctyp)0;
for (int i=0; i<6; i++) virial[i]=(acctyp)0;
}
acctyp2 drhoEacc;
drhoEacc.x = drhoEacc.y = (acctyp)0;
if (ii<inum) {
int numj, nbor, nbor_end;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,nbor_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
int iw=ix.w;
numtyp mass_itype = coeff2[iw].x;
numtyp rho0_itype = coeff2[iw].y;
numtyp soundspeed_itype = coeff2[iw].z;
numtyp B_itype = coeff2[iw].w;
#ifndef ONETYPE
int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
#endif
numtyp4 iv; fetch4(iv,i,vel_tex); //v_[i];
const numtyp4 extrai = extra[i];
numtyp rhoi = extrai.x;
// compute pressure of atom i with Tait EOS
numtyp tmp = rhoi / rho0_itype;
numtyp fi = tmp * tmp * tmp;
fi = B_itype * (fi * fi * tmp - (numtyp)1.0);
fi /= (rhoi * rhoi);
for ( ; nbor<nbor_end; nbor+=n_stride) {
ucl_prefetch(dev_packed+nbor+n_stride);
int j=dev_packed[nbor];
#ifndef ONETYPE
j &= NEIGHMASK;
#endif
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
int jtype=jx.w;
#ifndef ONETYPE
int mtype=itype+jx.w;
const numtyp cutsq_p=coeff[mtype].z;
#endif
numtyp4 jv; fetch4(jv,j,vel_tex); //v_[j];
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
if (rsq<cutsq_p) {
#ifndef ONETYPE
const numtyp coeffx=coeff[mtype].x; // viscosity[itype][jtype]
const numtyp coeffy=coeff[mtype].y; // cut[itype][jtype]
#endif
numtyp mass_jtype = coeff2[jtype].x;
numtyp rho0_jtype = coeff2[jtype].y;
numtyp soundspeed_jtype = coeff2[jtype].z;
numtyp B_jtype = coeff2[jtype].w;
const numtyp4 extraj = extra[j];
numtyp rhoj = extraj.x;
numtyp h = coeffy; // cut[itype][jtype]
numtyp ih = ucl_recip(h); // (numtyp)1.0 / h;
numtyp ihsq = ih * ih;
numtyp wfd = h - ucl_sqrt(rsq);
if (dimension == 3) {
// Lucy Kernel, 3d
wfd = (numtyp)-25.066903536973515383 * wfd * wfd * ihsq * ihsq * ihsq * ih;
} else {
// Lucy Kernel, 2d
wfd = (numtyp)-19.098593171027440292 * wfd * wfd * ihsq * ihsq * ihsq;
}
// compute pressure of atom j with Tait EOS
numtyp tmp = rhoj / rho0_jtype;
numtyp fj = tmp * tmp * tmp;
fj = B_jtype * (fj * fj * tmp - (numtyp)1.0);
fj /= (rhoj * rhoj);
// dot product of velocity delta and distance vector
numtyp delvx = iv.x - jv.x;
numtyp delvy = iv.y - jv.y;
numtyp delvz = iv.z - jv.z;
numtyp delVdotDelR = delx*delvx + dely*delvy + delz*delvz;
// artificial viscosity (Monaghan 1992)
numtyp fvisc = (numtyp)0;
if (delVdotDelR < (numtyp)0) {
numtyp mu = h * delVdotDelR / (rsq + (numtyp)0.01 * h * h);
fvisc = -coeffx * (soundspeed_itype + soundspeed_jtype) * mu / (rhoi + rhoj);
}
// total pair force & thermal energy increment
numtyp force = -mass_itype * mass_jtype * (fi + fj + fvisc) * wfd;
numtyp deltaE = (numtyp)-0.5 * force * delVdotDelR;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
// and change in density, drho[i]
drhoEacc.x += mass_jtype * delVdotDelR * wfd;
// change in thermal energy, desph[i]
drhoEacc.y += deltaE;
if (EVFLAG && vflag) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
} // if ii
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag, ans,engv);
store_drhoE(drhoEacc,ii,inum,tid,t_per_atom,offset,i,drhoE);
}