Files
lammps/lib/gpu/lal_amoeba.cpp

317 lines
12 KiB
C++

/***************************************************************************
amoeba.cpp
-------------------
Trung Dac Nguyen (Northwestern)
Class for acceleration of the amoeba pair style.
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin :
email : trung.nguyen@northwestern.edu
***************************************************************************/
#if defined(USE_OPENCL)
#include "amoeba_cl.h"
#elif defined(USE_CUDART)
const char *amoeba=0;
#else
#include "amoeba_cubin.h"
#endif
#include "lal_amoeba.h"
#include <cassert>
namespace LAMMPS_AL {
#define AmoebaT Amoeba<numtyp, acctyp>
extern Device<PRECISION,ACC_PRECISION> device;
template <class numtyp, class acctyp>
AmoebaT::Amoeba() : BaseAmoeba<numtyp,acctyp>(),
_allocated(false) {
}
template <class numtyp, class acctyp>
AmoebaT::~Amoeba() {
clear();
}
template <class numtyp, class acctyp>
int AmoebaT::bytes_per_atom(const int max_nbors) const {
return this->bytes_per_atom_atomic(max_nbors);
}
template <class numtyp, class acctyp>
int AmoebaT::init(const int ntypes, const int max_amtype, const int max_amclass,
const double *host_pdamp, const double *host_thole,
const double *host_dirdamp, const int *host_amtype2class,
const double *host_special_hal,
const double * /*host_special_repel*/,
const double * /*host_special_disp*/,
const double *host_special_mpole,
const double * /*host_special_polar_wscale*/,
const double *host_special_polar_piscale,
const double *host_special_polar_pscale,
const double *host_csix, const double *host_adisp,
const int nlocal, const int nall, const int max_nbors,
const int maxspecial, const int maxspecial15,
const double cell_size, const double gpu_split, FILE *_screen,
const double polar_dscale, const double polar_uscale) {
int success;
success=this->init_atomic(nlocal,nall,max_nbors,maxspecial,maxspecial15,
cell_size,gpu_split,_screen,amoeba,
"k_amoeba_multipole", "k_amoeba_udirect2b",
"k_amoeba_umutual2b", "k_amoeba_polar",
"k_amoeba_fphi_uind", "k_amoeba_fphi_mpole",
"k_amoeba_short_nbor", "k_amoeba_special15");
if (success!=0)
return success;
// If atom type constants fit in shared memory use fast kernel
int lj_types=ntypes;
shared_types=false;
int max_shared_types=this->device->max_shared_types();
if (lj_types<=max_shared_types && this->_block_size>=max_shared_types) {
lj_types=max_shared_types;
shared_types=true;
}
_lj_types=lj_types;
// Allocate a host write buffer for data initialization
UCL_H_Vec<numtyp4> host_write(max_amtype, *(this->ucl_device), UCL_WRITE_ONLY);
for (int i = 0; i < max_amtype; i++) {
host_write[i].x = host_pdamp[i];
host_write[i].y = host_thole[i];
host_write[i].z = host_dirdamp[i];
host_write[i].w = host_amtype2class[i];
}
coeff_amtype.alloc(max_amtype,*(this->ucl_device), UCL_READ_ONLY);
ucl_copy(coeff_amtype,host_write,false);
UCL_H_Vec<numtyp4> host_write2(max_amclass, *(this->ucl_device), UCL_WRITE_ONLY);
for (int i = 0; i < max_amclass; i++) {
host_write2[i].x = host_csix[i];
host_write2[i].y = host_adisp[i];
host_write2[i].z = (numtyp)0;
host_write2[i].w = (numtyp)0;
}
coeff_amclass.alloc(max_amclass,*(this->ucl_device), UCL_READ_ONLY);
ucl_copy(coeff_amclass,host_write2,false);
UCL_H_Vec<numtyp4> dview(5, *(this->ucl_device), UCL_WRITE_ONLY);
sp_amoeba.alloc(5,*(this->ucl_device),UCL_READ_ONLY);
for (int i=0; i<5; i++) {
dview[i].x=host_special_hal[i];
dview[i].y=host_special_polar_piscale[i];
dview[i].z=host_special_polar_pscale[i];
dview[i].w=host_special_mpole[i];
}
ucl_copy(sp_amoeba,dview,5,false);
_polar_dscale = polar_dscale;
_polar_uscale = polar_uscale;
_allocated=true;
this->_max_bytes=coeff_amtype.row_bytes() + coeff_amclass.row_bytes()
+ sp_amoeba.row_bytes() + this->_tep.row_bytes()
+ this->_fieldp.row_bytes() + this->_thetai1.row_bytes()
+ this->_thetai2.row_bytes() + this->_thetai3.row_bytes()
+ this->_igrid.row_bytes() + this->_cgrid_brick.row_bytes();
return 0;
}
template <class numtyp, class acctyp>
void AmoebaT::clear() {
if (!_allocated)
return;
_allocated=false;
coeff_amtype.clear();
coeff_amclass.clear();
sp_amoeba.clear();
this->clear_atomic();
}
template <class numtyp, class acctyp>
double AmoebaT::host_memory_usage() const {
return this->host_memory_usage_atomic()+sizeof(Amoeba<numtyp,acctyp>);
}
// ---------------------------------------------------------------------------
// Calculate the multipole real-space term, returning tep
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int AmoebaT::multipole_real(const int eflag, const int vflag) {
int ainum=this->ans->inum();
if (ainum == 0)
return 0;
int _nall=this->atom->nall();
int nbor_pitch=this->nbor->nbor_pitch();
// Compute the block size and grid size to keep all cores busy
const int BX=this->block_size();
int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/this->_threads_per_atom)));
this->time_pair.start();
// Build the short neighbor list for the cutoff off2_mpole,
// at this point mpole is the first kernel in a time step for AMOEBA
this->k_short_nbor.set_size(GX,BX);
this->k_short_nbor.run(&this->atom->x, &this->nbor->dev_nbor,
&this->_nbor_data->begin(),
&this->dev_short_nbor, &this->_off2_mpole, &ainum,
&nbor_pitch, &this->_threads_per_atom);
this->k_multipole.set_size(GX,BX);
this->k_multipole.run(&this->atom->x, &this->atom->extra,
&coeff_amtype, &sp_amoeba,
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->dev_short_nbor,
&this->ans->force, &this->ans->engv, &this->_tep,
&eflag, &vflag, &ainum, &_nall, &nbor_pitch,
&this->_threads_per_atom, &this->_aewald, &this->_felec,
&this->_off2_mpole, &_polar_dscale, &_polar_uscale);
this->time_pair.stop();
return GX;
}
// ---------------------------------------------------------------------------
// Launch the real-space permanent field kernel
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int AmoebaT::udirect2b(const int /*eflag*/, const int /*vflag*/) {
int ainum=this->ans->inum();
if (ainum == 0)
return 0;
int _nall=this->atom->nall();
int nbor_pitch=this->nbor->nbor_pitch();
// Compute the block size and grid size to keep all cores busy
const int BX=this->block_size();
int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/this->_threads_per_atom)));
this->time_pair.start();
// Build the short neighbor list for the cutoff _off2_polar, if not done yet
// this is the first kernel in a time step where _off2_polar is used
if (!this->short_nbor_polar_avail) {
this->k_short_nbor.set_size(GX,BX);
this->k_short_nbor.run(&this->atom->x, &this->nbor->dev_nbor,
&this->_nbor_data->begin(),
&this->dev_short_nbor, &this->_off2_polar, &ainum,
&nbor_pitch, &this->_threads_per_atom);
this->short_nbor_polar_avail = true;
}
this->k_udirect2b.set_size(GX,BX);
this->k_udirect2b.run(&this->atom->x, &this->atom->extra, &coeff_amtype, &sp_amoeba,
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->dev_short_nbor,
&this->_fieldp, &ainum, &_nall, &nbor_pitch,
&this->_threads_per_atom, &this->_aewald, &this->_off2_polar,
&_polar_dscale, &_polar_uscale);
this->time_pair.stop();
return GX;
}
// ---------------------------------------------------------------------------
// Launch the real-space induced field kernel, returning field and fieldp
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int AmoebaT::umutual2b(const int /*eflag*/, const int /*vflag*/) {
int ainum=this->ans->inum();
if (ainum == 0)
return 0;
int _nall=this->atom->nall();
int nbor_pitch=this->nbor->nbor_pitch();
// Compute the block size and grid size to keep all cores busy
const int BX=this->block_size();
int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/this->_threads_per_atom)));
this->time_pair.start();
// Build the short neighbor list if not done yet
if (!this->short_nbor_polar_avail) {
this->k_short_nbor.set_size(GX,BX);
this->k_short_nbor.run(&this->atom->x, &this->nbor->dev_nbor,
&this->_nbor_data->begin(), &this->dev_short_nbor,
&this->_off2_polar, &ainum, &nbor_pitch,
&this->_threads_per_atom);
this->short_nbor_polar_avail = true;
}
this->k_umutual2b.set_size(GX,BX);
this->k_umutual2b.run(&this->atom->x, &this->atom->extra, &coeff_amtype, &sp_amoeba,
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->dev_short_nbor, &this->_fieldp, &ainum, &_nall,
&nbor_pitch, &this->_threads_per_atom, &this->_aewald,
&this->_off2_polar, &_polar_dscale, &_polar_uscale);
this->time_pair.stop();
return GX;
}
// ---------------------------------------------------------------------------
// Launch the polar real-space kernel, returning tep
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
int AmoebaT::polar_real(const int eflag, const int vflag) {
int ainum=this->ans->inum();
if (ainum == 0)
return 0;
int _nall=this->atom->nall();
int nbor_pitch=this->nbor->nbor_pitch();
// Compute the block size and grid size to keep all cores busy
const int BX=this->block_size();
const int GX=static_cast<int>(ceil(static_cast<double>(ainum)/(BX/this->_threads_per_atom)));
this->time_pair.start();
// Build the short neighbor list if not done yet
if (!this->short_nbor_polar_avail) {
this->k_short_nbor.set_size(GX,BX);
this->k_short_nbor.run(&this->atom->x, &this->nbor->dev_nbor,
&this->_nbor_data->begin(),
&this->dev_short_nbor, &this->_off2_polar, &ainum,
&nbor_pitch, &this->_threads_per_atom);
this->short_nbor_polar_avail = true;
}
this->k_polar.set_size(GX,BX);
this->k_polar.run(&this->atom->x, &this->atom->extra, &coeff_amtype, &sp_amoeba,
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->dev_short_nbor,
&this->ans->force, &this->ans->engv, &this->_tep,
&eflag, &vflag, &ainum, &_nall, &nbor_pitch,
&this->_threads_per_atom, &this->_aewald, &this->_felec,
&this->_off2_polar, &_polar_dscale, &_polar_uscale);
this->time_pair.stop();
// Signal that short nbor list is not avail for the next time step
// do it here because polar_real() is the last kernel in a time step at this point
this->short_nbor_polar_avail = false;
return GX;
}
template class Amoeba<PRECISION,ACC_PRECISION>;
}