250 lines
6.0 KiB
Plaintext
250 lines
6.0 KiB
Plaintext
LAMMPS data file via write_data, version 24 Oct 2015-ICMS, timestep = 100
|
|
|
|
18 atoms
|
|
2 atom types
|
|
19 bonds
|
|
2 bond types
|
|
30 angles
|
|
2 angle types
|
|
44 dihedrals
|
|
3 dihedral types
|
|
10 impropers
|
|
2 improper types
|
|
|
|
6.4669444000000006e-02 2.0064669444000000e+01 xlo xhi
|
|
-2.0061369444000000e+01 -6.1369444000000002e-02 ylo yhi
|
|
-2.0006684444000001e+01 -6.6844440000000003e-03 zlo zhi
|
|
|
|
Masses
|
|
|
|
1 1.00797
|
|
2 12.0112
|
|
|
|
Pair Coeffs # lj/class2/coul/cut
|
|
|
|
1 0.023 2.878
|
|
2 0.068 3.915
|
|
|
|
Bond Coeffs # class2
|
|
|
|
1 1.0982 372.825 -803.453 894.317
|
|
2 1.417 470.836 -627.618 1327.63
|
|
|
|
Angle Coeffs # class2
|
|
|
|
1 117.94 35.1558 -12.4682 0
|
|
2 118.9 61.0226 -34.9931 0
|
|
|
|
BondBond Coeffs
|
|
|
|
1 1.0795 1.0982 1.417
|
|
2 68.2856 1.417 1.417
|
|
|
|
BondAngle Coeffs
|
|
|
|
1 24.2183 20.0033 1.0982 1.417
|
|
2 28.8708 28.8708 1.417 1.417
|
|
|
|
Dihedral Coeffs # class2
|
|
|
|
1 0 0 3.9661 0 0 0
|
|
2 0 0 2.35 0 0 0
|
|
3 8.3667 0 1.2 0 0 0
|
|
|
|
AngleAngleTorsion Coeffs
|
|
|
|
1 -4.8141 117.94 118.9
|
|
2 0.3598 117.94 117.94
|
|
3 0 118.9 118.9
|
|
|
|
EndBondTorsion Coeffs
|
|
|
|
1 0 -0.4669 0 0 -6.8958 0 1.0982 1.417
|
|
2 0 -0.689 0 0 -0.689 0 1.0982 1.0982
|
|
3 -0.1185 6.3204 0 -0.1185 6.3204 0 1.417 1.417
|
|
|
|
MiddleBondTorsion Coeffs
|
|
|
|
1 0 -1.1521 0 1.417
|
|
2 0 4.8228 0 1.417
|
|
3 27.5989 -2.312 0 1.417
|
|
|
|
BondBond13 Coeffs
|
|
|
|
1 0 1.0982 1.417
|
|
2 0 1.0982 1.0982
|
|
3 0 1.417 1.417
|
|
|
|
AngleTorsion Coeffs
|
|
|
|
1 0 2.7147 0 0 2.5014 0 117.94 118.9
|
|
2 0 2.4501 0 0 2.4501 0 117.94 117.94
|
|
3 1.9767 1.0239 0 1.9767 1.0239 0 118.9 118.9
|
|
|
|
Improper Coeffs # class2
|
|
|
|
1 4.8912 0
|
|
2 7.1794 0
|
|
|
|
AngleAngle Coeffs
|
|
|
|
1 0 0 0 117.94 118.9 117.94
|
|
2 0 0 0 118.9 118.9 118.9
|
|
|
|
Atoms # full
|
|
|
|
18 1 1 1.3100000000000001e-01 1.0032362752100944e+01 -1.2850872457944025e+01 -1.0014072691976034e+01 0 0 0
|
|
12 1 2 -1.2700000000000000e-01 1.2537032816978714e+01 -1.0551070704115340e+01 -1.0013222696752699e+01 0 0 0
|
|
13 1 2 -1.2700000000000000e-01 1.1897661261740154e+01 -1.1790868716774206e+01 -1.0011666036389959e+01 0 0 0
|
|
14 1 2 -1.1799999999999999e-01 1.0521733489465674e+01 -1.1866957953113106e+01 -1.0014645375595610e+01 0 0 0
|
|
16 1 1 1.3100000000000001e-01 1.3635211503951460e+01 -1.0504644137864680e+01 -1.0012607443532412e+01 0 0 0
|
|
17 1 1 1.3300000000000001e-01 1.2496246242651550e+01 -1.2712938767230884e+01 -1.0008017486622476e+01 0 0 0
|
|
11 1 2 -1.1899999999999999e-01 1.1801344930238916e+01 -9.3856119751428917e+00 -1.0015402694750533e+01 0 0 0
|
|
15 1 1 1.3200000000000001e-01 1.2320246478960698e+01 -8.4165672485623446e+00 -1.0015522359025409e+01 0 0 0
|
|
6 1 2 -3.5999999999999997e-02 9.7384404501559292e+00 -1.0694334361385316e+01 -1.0014577811303761e+01 0 0 0
|
|
7 1 2 -1.1700000000000001e-01 8.3289051008280008e+00 -1.0736828465297775e+01 -1.0007099895934864e+01 0 0 0
|
|
10 1 1 1.3200000000000001e-01 7.8115345677910000e+00 -1.1706626818692703e+01 -1.0007194315863302e+01 0 0 0
|
|
1 1 1 1.3200000000000001e-01 6.4941686848437516e+00 -9.6201232611557437e+00 -9.9883895846937563e+00 0 0 0
|
|
2 1 2 -1.2800000000000000e-01 7.5923273335064989e+00 -9.5723085661895944e+00 -9.9968287768198927e+00 0 0 0
|
|
3 1 2 -1.2700000000000000e-01 8.2312889333738042e+00 -8.3322087518588788e+00 -9.9956627056362581e+00 0 0 0
|
|
4 1 2 -1.1700000000000001e-01 9.6072935742507113e+00 -8.2548632320642561e+00 -1.0003654663559724e+01 0 0 0
|
|
8 1 1 1.3100000000000001e-01 7.6317658715267713e+00 -7.4105826788806439e+00 -9.9885680376332981e+00 0 0 0
|
|
5 1 2 -3.6999999999999998e-02 1.0391489516609976e+01 -9.4270307576481098e+00 -1.0012988749237229e+01 0 0 0
|
|
9 1 1 1.3300000000000001e-01 1.0094996491025443e+01 -7.2702111460794043e+00 -1.0000198674672777e+01 0 0 0
|
|
|
|
Velocities
|
|
|
|
18 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
12 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
13 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
14 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
16 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
17 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
11 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
15 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
6 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
7 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
10 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
2 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
3 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
4 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
8 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
5 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
9 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
|
|
Bonds
|
|
|
|
1 1 18 14
|
|
2 2 12 13
|
|
3 2 13 14
|
|
4 1 16 12
|
|
5 1 17 13
|
|
6 2 11 12
|
|
7 1 15 11
|
|
8 2 6 7
|
|
9 2 6 14
|
|
10 1 10 7
|
|
11 1 1 2
|
|
12 2 2 3
|
|
13 2 2 7
|
|
14 2 3 4
|
|
15 2 4 5
|
|
16 1 8 3
|
|
17 2 5 6
|
|
18 2 5 11
|
|
19 1 9 4
|
|
|
|
Angles
|
|
|
|
1 2 11 12 13
|
|
2 1 16 12 11
|
|
3 1 16 12 13
|
|
4 2 12 13 14
|
|
5 1 17 13 12
|
|
6 1 17 13 14
|
|
7 2 6 14 13
|
|
8 1 18 14 6
|
|
9 1 18 14 13
|
|
10 2 5 11 12
|
|
11 1 15 11 5
|
|
12 1 15 11 12
|
|
13 2 5 6 7
|
|
14 2 5 6 14
|
|
15 2 7 6 14
|
|
16 2 2 7 6
|
|
17 1 10 7 2
|
|
18 1 10 7 6
|
|
19 1 1 2 3
|
|
20 1 1 2 7
|
|
21 2 3 2 7
|
|
22 2 2 3 4
|
|
23 1 8 3 2
|
|
24 1 8 3 4
|
|
25 2 3 4 5
|
|
26 1 9 4 3
|
|
27 1 9 4 5
|
|
28 2 4 5 6
|
|
29 2 4 5 11
|
|
30 2 6 5 11
|
|
|
|
Dihedrals
|
|
|
|
1 1 16 12 11 5
|
|
2 3 11 12 13 14
|
|
3 1 16 12 13 14
|
|
4 2 16 12 13 17
|
|
5 1 17 13 12 11
|
|
6 3 12 13 14 6
|
|
7 1 17 13 14 6
|
|
8 2 17 13 14 18
|
|
9 1 18 14 6 5
|
|
10 1 18 14 6 7
|
|
11 1 18 14 13 12
|
|
12 1 15 11 5 4
|
|
13 1 15 11 5 6
|
|
14 3 5 11 12 13
|
|
15 1 15 11 12 13
|
|
16 2 15 11 12 16
|
|
17 3 5 6 7 2
|
|
18 3 14 6 7 2
|
|
19 3 5 6 14 13
|
|
20 3 7 6 14 13
|
|
21 1 10 7 2 3
|
|
22 1 10 7 6 5
|
|
23 1 10 7 6 14
|
|
24 1 1 2 3 4
|
|
25 2 1 2 3 8
|
|
26 3 7 2 3 4
|
|
27 1 1 2 7 6
|
|
28 2 1 2 7 10
|
|
29 3 3 2 7 6
|
|
30 1 8 3 2 7
|
|
31 3 2 3 4 5
|
|
32 1 8 3 4 5
|
|
33 2 8 3 4 9
|
|
34 1 9 4 3 2
|
|
35 3 3 4 5 6
|
|
36 3 3 4 5 11
|
|
37 1 9 4 5 6
|
|
38 1 9 4 5 11
|
|
39 3 4 5 6 7
|
|
40 3 4 5 6 14
|
|
41 3 11 5 6 7
|
|
42 3 11 5 6 14
|
|
43 3 4 5 11 12
|
|
44 3 6 5 11 12
|
|
|
|
Impropers
|
|
|
|
1 1 16 12 13 11
|
|
2 1 17 13 14 12
|
|
3 1 18 14 13 6
|
|
4 1 15 11 12 5
|
|
5 2 5 6 7 14
|
|
6 1 10 7 6 2
|
|
7 1 1 2 3 7
|
|
8 1 8 3 4 2
|
|
9 1 9 4 5 3
|
|
10 2 4 5 6 11
|