Files
lammps/src/SPIN/neb_spin.cpp

841 lines
25 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------
Contributing authors: Julien Tranchida (SNL)
Please cite the related publication:
Bessarab, P. F., Uzdin, V. M., & Jonsson, H. (2015).
Method for finding mechanism and activation energy of magnetic transitions,
applied to skyrmion and antivortex annihilation.
Computer Physics Communications, 196, 335-347.
------------------------------------------------------------------------- */
#include "neb_spin.h"
#include "atom.h"
#include "citeme.h"
#include "comm.h"
#include "domain.h"
#include "error.h"
#include "finish.h"
#include "fix.h"
#include "fix_neb_spin.h"
#include "memory.h"
#include "min.h"
#include "modify.h"
#include "output.h"
#include "thermo.h"
#include "timer.h"
#include "tokenizer.h"
#include "universe.h"
#include "update.h"
#include <cmath>
#include <cstring>
#include <exception>
using namespace LAMMPS_NS;
static const char cite_neb_spin[] =
"neb/spin command: doi:10.1016/j.cpc.2015.07.001\n\n"
"@article{bessarab2015method,\n"
"title={Method for Finding Mechanism and Activation Energy of\n"
" Magnetic Transitions, Applied to Skyrmion and Antivortex\n"
" Annihilation},\n"
"author={Bessarab, P. F. and Uzdin, V. M. and J{\'o}nsson, H.},\n"
"journal={Computer Physics Communications},\n"
"volume={196},\n"
"pages={335--347},\n"
"year={2015},\n"
"publisher={Elsevier}\n"
"doi={10.1016/j.cpc.2015.07.001}\n"
"}\n\n";
static constexpr int MAXLINE = 256;
static constexpr int CHUNK = 1024;
// 8 attributes: tag, spin norm, position (3), spin direction (3)
static constexpr int ATTRIBUTE_PERLINE = 8;
/* ---------------------------------------------------------------------- */
NEBSpin::NEBSpin(LAMMPS *lmp) : Command(lmp), fp(nullptr) {
if (lmp->citeme) lmp->citeme->add(cite_neb_spin);
}
/* ---------------------------------------------------------------------- */
NEBSpin::~NEBSpin()
{
if (roots != MPI_COMM_NULL) MPI_Comm_free(&roots);
memory->destroy(all);
delete[] rdist;
if (fp) {
if (compressed) platform::pclose(fp);
else fclose(fp);
}
}
/* ----------------------------------------------------------------------
perform NEBSpin on multiple replicas
------------------------------------------------------------------------- */
void NEBSpin::command(int narg, char **arg)
{
if (domain->box_exist == 0)
error->all(FLERR,"NEBSpin command before simulation box is defined" + utils::errorurl(33));
if (narg < 6) error->universe_all(FLERR,"Illegal NEBSpin command");
etol = utils::numeric(FLERR,arg[0],false,lmp);
ttol = utils::numeric(FLERR,arg[1],false,lmp);
n1steps = utils::inumeric(FLERR,arg[2],false,lmp);
n2steps = utils::inumeric(FLERR,arg[3],false,lmp);
nevery = utils::inumeric(FLERR,arg[4],false,lmp);
// error checks
if (etol < 0.0) error->all(FLERR,"Illegal NEBSpin command");
if (ttol < 0.0) error->all(FLERR,"Illegal NEBSpin command");
if (nevery <= 0) error->universe_all(FLERR,"Illegal NEBSpin command");
if (n1steps % nevery || n2steps % nevery)
error->universe_all(FLERR,"Illegal NEBSpin command");
// replica info
nreplica = universe->nworlds;
ireplica = universe->iworld;
me_universe = universe->me;
uworld = universe->uworld;
MPI_Comm_rank(world,&me);
// check metal units and spin atom/style
if (!atom->sp_flag)
error->all(FLERR,"neb/spin requires atom/spin style");
if (strcmp(update->unit_style,"metal") != 0)
error->all(FLERR,"neb/spin simulation requires metal unit style");
// error checks
if (nreplica == 1) error->all(FLERR,"Cannot use NEBSpin with a single replica");
if (atom->map_style == Atom::MAP_NONE)
error->all(FLERR,"Cannot use NEBSpin unless atom map exists");
// process file-style setting to setup initial configs for all replicas
if (strcmp(arg[5],"final") == 0) {
if (narg != 7 && narg !=8) error->universe_all(FLERR,"Illegal NEBSpin command");
inpfile = arg[6];
readfile(inpfile,0);
} else if (strcmp(arg[5],"each") == 0) {
if (narg != 7 && narg !=8) error->universe_all(FLERR,"Illegal NEBSpin command");
inpfile = arg[6];
readfile(inpfile,1);
} else if (strcmp(arg[5],"none") == 0) {
if (narg != 6 && narg !=7) error->universe_all(FLERR,"Illegal NEBSpin command");
} else error->universe_all(FLERR,"Illegal NEBSpin command");
verbose=false;
if (strcmp(arg[narg-1],"verbose") == 0) verbose=true;
// run the NEB calculation
run();
}
/* ----------------------------------------------------------------------
run NEBSpin on multiple replicas
------------------------------------------------------------------------- */
void NEBSpin::run()
{
// create MPI communicator for root proc from each world
int color;
if (me == 0)
color = 0;
else
color = MPI_UNDEFINED;
MPI_Comm_split(uworld,color,0,&roots);
// search for neb_spin fix, allocate it
auto fixes = modify->get_fix_by_style("^neb/spin");
if (fixes.size() != 1)
error->all(FLERR,"NEBSpin requires use of exactly one fix neb/spin instance");
fneb = dynamic_cast<FixNEBSpin *>(fixes[0]);
if (verbose) numall =7;
else numall = 4;
memory->create(all,nreplica,numall,"neb:all");
rdist = new double[nreplica];
// initialize LAMMPS
update->whichflag = 2;
update->etol = etol;
update->ftol = ttol; // update->ftol is a torque tolerance
update->multireplica = 1;
lmp->init();
// check if correct minimizer is setup
if (update->minimize->searchflag)
error->all(FLERR,"NEBSpin requires damped dynamics minimizer");
if (!utils::strmatch(update->minimize_style,"^spin"))
error->all(FLERR,"NEBSpin requires a spin minimizer");
// setup regular NEBSpin minimization
FILE *uscreen = universe->uscreen;
FILE *ulogfile = universe->ulogfile;
if (me_universe == 0 && uscreen)
fprintf(uscreen,"Setting up regular NEBSpin ...\n");
update->beginstep = update->firststep = update->ntimestep;
update->endstep = update->laststep = update->firststep + n1steps;
update->nsteps = n1steps;
update->max_eval = n1steps;
if (update->laststep < 0)
error->all(FLERR,"Too many timesteps for NEBSpin");
update->minimize->setup();
if (me_universe == 0) {
if (uscreen) {
if (verbose) {
fprintf(uscreen,"Step MaxReplicaTorque MaxAtomTorque "
"GradV0 GradV1 GradVc EBF EBR RDT "
"RD1 PE1 RD2 PE2 ... RDN PEN "
"GradV0dottan DN0 ... GradVNdottan DNN\n");
} else {
fprintf(uscreen,"Step MaxReplicaTorque MaxAtomTorque "
"GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... "
"RDN PEN\n");
}
}
if (ulogfile) {
if (verbose) {
fprintf(ulogfile,"Step MaxReplicaTorque MaxAtomTorque "
"GradV0 GradV1 GradVc EBF EBR RDT "
"RD1 PE1 RD2 PE2 ... RDN PEN "
"GradV0dottan DN0 ... GradVNdottan DNN\n");
} else {
fprintf(ulogfile,"Step MaxReplicaTorque MaxAtomTorque "
"GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... "
"RDN PEN\n");
}
}
}
print_status();
// perform regular NEBSpin for n1steps or until replicas converge
// retrieve PE values from fix NEBSpin and print every nevery iterations
// break out of while loop early if converged
// damped dynamic min styles ensure all replicas converge together
timer->init();
timer->barrier_start();
// if (ireplica != 0 && ireplica != nreplica -1)
while (update->minimize->niter < n1steps) {
update->minimize->run(nevery);
print_status();
if (update->minimize->stop_condition) break;
}
timer->barrier_stop();
update->minimize->cleanup();
Finish finish(lmp);
finish.end(1);
// switch fix NEBSpin to climbing mode
// top = replica that becomes hill climber
double vmax = all[0][0];
int top = 0;
for (int m = 1; m < nreplica; m++)
if (vmax < all[m][0]) {
vmax = all[m][0];
top = m;
}
// setup climbing NEBSpin minimization
// must reinitialize minimizer so it re-creates its fix MINIMIZE
if (me_universe == 0 && uscreen)
fprintf(uscreen,"Setting up climbing ...\n");
if (me_universe == 0) {
if (uscreen)
fprintf(uscreen,"Climbing replica = %d\n",top+1);
if (ulogfile)
fprintf(ulogfile,"Climbing replica = %d\n",top+1);
}
update->beginstep = update->firststep = update->ntimestep;
update->endstep = update->laststep = update->firststep + n2steps;
update->nsteps = n2steps;
update->max_eval = n2steps;
if (update->laststep < 0)
error->all(FLERR,"Too many timesteps");
update->minimize->init();
fneb->rclimber = top;
update->minimize->setup();
if (me_universe == 0) {
if (uscreen) {
if (verbose) {
fprintf(uscreen,"Step MaxReplicaTorque MaxAtomTorque "
"GradV0 GradV1 GradVc EBF EBR RDT "
"RD1 PE1 RD2 PE2 ... RDN PEN "
"GradV0dottan DN0 ... GradVNdottan DNN\n");
} else {
fprintf(uscreen,"Step MaxReplicaTorque MaxAtomTorque "
"GradV0 GradV1 GradVc "
"EBF EBR RDT "
"RD1 PE1 RD2 PE2 ... RDN PEN\n");
}
}
if (ulogfile) {
if (verbose) {
fprintf(ulogfile,"Step MaxReplicaTorque MaxAtomTorque "
"GradV0 GradV1 GradVc EBF EBR RDT "
"RD1 PE1 RD2 PE2 ... RDN PEN "
"GradV0dottan DN0 ... GradVNdottan DNN\n");
} else {
fprintf(ulogfile,"Step MaxReplicaTorque MaxAtomTorque "
"GradV0 GradV1 GradVc "
"EBF EBR RDT "
"RD1 PE1 RD2 PE2 ... RDN PEN\n");
}
}
}
print_status();
// perform climbing NEBSpin for n2steps or until replicas converge
// retrieve PE values from fix NEBSpin and print every nevery iterations
// break induced if converged
// damped dynamic min styles ensure all replicas converge together
timer->init();
timer->barrier_start();
while (update->minimize->niter < n2steps) {
update->minimize->run(nevery);
print_status();
if (update->minimize->stop_condition) break;
}
timer->barrier_stop();
update->minimize->cleanup();
finish.end(1);
update->whichflag = 0;
update->multireplica = 0;
update->firststep = update->laststep = 0;
update->beginstep = update->endstep = 0;
}
/* ----------------------------------------------------------------------
read initial config atom coords from file
flag = 0
only first replica opens file and reads it
first replica bcasts lines to all replicas
final replica stores coords
intermediate replicas interpolate from coords
new coord = replica fraction between current and final state
initial replica does nothing
flag = 1
each replica (except first) opens file and reads it
each replica stores coords
initial replica does nothing
------------------------------------------------------------------------- */
void NEBSpin::readfile(char *file, int flag)
{
int i,nchunk,eofflag,nlines;
tagint tag;
char *eof,*start,*next,*buf;
char line[MAXLINE] = {'\0'};
double musp,xx,yy,zz,spx,spy,spz;
if (me_universe == 0 && universe->uscreen)
fprintf(universe->uscreen,"Reading NEBSpin coordinate file(s) ...\n");
// flag = 0, universe root reads header of file, bcast to universe
// flag = 1, each replica's root reads header of file, bcast to world
// but explicitly skip first replica
if (flag == 0) {
if (me_universe == 0) {
open(file);
while (true) {
eof = fgets(line,MAXLINE,fp);
if (eof == nullptr) error->one(FLERR,"Unexpected end of neb/spin file");
start = &line[strspn(line," \t\n\v\f\r")];
if (*start != '\0' && *start != '#') break;
}
int rv = sscanf(line,"%d",&nlines);
if (rv != 1) nlines = -1;
}
MPI_Bcast(&nlines,1,MPI_INT,0,uworld);
if (nlines < 0)
error->universe_all(FLERR,"Incorrectly formatted NEB file");
} else {
if (me == 0) {
if (ireplica) {
open(file);
while (true) {
eof = fgets(line,MAXLINE,fp);
if (eof == nullptr) error->one(FLERR,"Unexpected end of neb/spin file");
start = &line[strspn(line," \t\n\v\f\r")];
if (*start != '\0' && *start != '#') break;
}
int rv = sscanf(line,"%d",&nlines);
if (rv != 1) nlines = -1;
} else nlines = 0;
}
MPI_Bcast(&nlines,1,MPI_INT,0,world);
if (nlines < 0)
error->all(FLERR,"Incorrectly formatted NEB file");
}
auto buffer = new char[CHUNK*MAXLINE];
double fraction = ireplica/(nreplica-1.0);
double **x = atom->x;
double **sp = atom->sp;
double spinit[3],spfinal[3];
int nlocal = atom->nlocal;
// loop over chunks of lines read from file
// two versions of read_lines_from_file() for world vs universe bcast
// count # of atom coords changed so can check for invalid atom IDs in file
int ncount=0, nread=0, temp_flag=0, rot_flag=0;
while (nread < nlines) {
nchunk = MIN(nlines-nread,CHUNK);
if (flag == 0)
eofflag = utils::read_lines_from_file(fp,nchunk,MAXLINE,buffer,
universe->me,universe->uworld);
else
eofflag = utils::read_lines_from_file(fp,nchunk,MAXLINE,buffer,me,world);
if (eofflag) error->all(FLERR,"Unexpected end of neb/spin file");
buf = buffer;
next = strchr(buf,'\n');
*next = '\0';
int nwords = utils::count_words(utils::trim_comment(buf));
*next = '\n';
if (nwords != ATTRIBUTE_PERLINE)
error->all(FLERR,"Incorrect atom format in neb/spin file");
// loop over lines of atom coords
// tokenize the line into values
for (i = 0; i < nchunk; i++) {
next = strchr(buf,'\n');
*next = '\0';
try {
ValueTokenizer values(buf," \t\n\r\f");
// adjust spin coord based on replica fraction
// for flag = 0, interpolate for intermediate and final replicas
// for flag = 1, replace existing coord with new coord
// ignore image flags of final x
// for interpolation:
// new x is displacement from old x via minimum image convention
// if final x is across periodic boundary:
// new x may be outside box
// will be remapped back into box when simulation starts
// its image flags will then be adjusted
tag = values.next_tagint();
int m = atom->map(tag);
if (m >= 0 && m < nlocal) {
ncount++;
musp = values.next_double();
xx = values.next_double();
yy = values.next_double();
zz = values.next_double();
spx = values.next_double();
spy = values.next_double();
spz = values.next_double();
if (flag == 0) {
spinit[0] = sp[m][0];
spinit[1] = sp[m][1];
spinit[2] = sp[m][2];
spfinal[0] = spx;
spfinal[1] = spy;
spfinal[2] = spz;
// interpolate intermediate spin states
sp[m][3] = musp;
if (fraction == 0.0) {
sp[m][0] = spinit[0];
sp[m][1] = spinit[1];
sp[m][2] = spinit[2];
} else if (fraction == 1.0) {
sp[m][0] = spfinal[0];
sp[m][1] = spfinal[1];
sp[m][2] = spfinal[2];
} else {
temp_flag = initial_rotation(spinit,spfinal,fraction);
rot_flag = MAX(temp_flag,rot_flag);
sp[m][0] = spfinal[0];
sp[m][1] = spfinal[1];
sp[m][2] = spfinal[2];
}
} else {
sp[m][3] = musp;
x[m][0] = xx;
x[m][1] = yy;
x[m][2] = zz;
sp[m][0] = spx;
sp[m][1] = spy;
sp[m][2] = spz;
}
}
} catch (std::exception &e) {
error->universe_one(FLERR,"Incorrectly formatted NEB file: " + std::string(e.what()));
}
buf = next + 1;
}
nread += nchunk;
}
// warning message if one or more couples (spi,spf) were aligned
// this breaks Rodrigues' formula, and an arbitrary rotation
// vector has to be chosen
if ((rot_flag > 0) && (comm->me == 0))
error->warning(FLERR,"arbitrary initial rotation of one or more spin(s)");
// check that all atom IDs in file were found by a proc
if (flag == 0) {
int ntotal;
MPI_Allreduce(&ncount,&ntotal,1,MPI_INT,MPI_SUM,uworld);
if (ntotal != nreplica*nlines)
error->universe_all(FLERR,"Invalid atom IDs in neb/spin file");
} else {
int ntotal;
MPI_Allreduce(&ncount,&ntotal,1,MPI_INT,MPI_SUM,world);
if (ntotal != nlines)
error->all(FLERR,"Invalid atom IDs in neb/spin file");
}
// clean up
delete[] buffer;
if (flag == 0) {
if (me_universe == 0) {
if (compressed) platform::pclose(fp);
else fclose(fp);
}
} else {
if (me == 0 && ireplica) {
if (compressed) platform::pclose(fp);
else fclose(fp);
}
}
fp = nullptr;
}
/* ----------------------------------------------------------------------
initial configuration of intermediate spins using Rodrigues' formula
interpolates between initial (spi) and final (stored in sploc)
------------------------------------------------------------------------- */
int NEBSpin::initial_rotation(double *spi, double *sploc, double fraction)
{
// no interpolation for initial and final replica
if (fraction == 0.0 || fraction == 1.0) return 0;
int rot_flag = 0;
double kx,ky,kz;
double spix,spiy,spiz,spfx,spfy,spfz;
double kcrossx,kcrossy,kcrossz,knormsq;
double kdots;
double spkx,spky,spkz;
double sidotsf,omega,iknorm,isnorm;
spix = spi[0];
spiy = spi[1];
spiz = spi[2];
spfx = sploc[0];
spfy = sploc[1];
spfz = sploc[2];
kx = spiy*spfz - spiz*spfy;
ky = spiz*spfx - spix*spfz;
kz = spix*spfy - spiy*spfx;
knormsq = kx*kx+ky*ky+kz*kz;
sidotsf = spix*spfx + spiy*spfy + spiz*spfz;
// if knormsq == 0.0, init and final spins are aligned
// Rodrigues' formula breaks, needs to define another axis k
if (knormsq == 0.0) {
if (sidotsf > 0.0) { // spins aligned and in same direction
return 0;
} else if (sidotsf < 0.0) { // spins aligned and in opposite directions
// defining a rotation axis
// first guess, k = spi x [100]
// second guess, k = spi x [010]
if (spiy*spiy + spiz*spiz != 0.0) { // spin not along [100]
kx = 0.0;
ky = spiz;
kz = -spiy;
knormsq = ky*ky + kz*kz;
} else if (spix*spix + spiz*spiz != 0.0) { // spin not along [010]
kx = -spiz;
ky = 0.0;
kz = spix;
knormsq = kx*kx + kz*kz;
} else error->all(FLERR,"Incorrect initial rotation operation");
rot_flag = 1;
}
}
// knormsq should not be 0
if (knormsq == 0.0)
error->all(FLERR,"Incorrect initial rotation operation");
// normalize k vector
iknorm = 1.0/sqrt(knormsq);
kx *= iknorm;
ky *= iknorm;
kz *= iknorm;
// calc. k x spi and total rotation angle
kcrossx = ky*spiz - kz*spiy;
kcrossy = kz*spix - kx*spiz;
kcrossz = kx*spiy - ky*spix;
kdots = kx*spix + ky*spiy + kz*spiz;
omega = acos(sidotsf);
omega *= fraction;
// apply Rodrigues' formula
spkx = spix*cos(omega);
spky = spiy*cos(omega);
spkz = spiz*cos(omega);
spkx += kcrossx*sin(omega);
spky += kcrossy*sin(omega);
spkz += kcrossz*sin(omega);
spkx += kx*kdots*(1.0-cos(omega));
spky += ky*kdots*(1.0-cos(omega));
spkz += kz*kdots*(1.0-cos(omega));
// normalizing resulting spin vector
isnorm = 1.0/sqrt(spkx*spkx+spky*spky+spkz*spkz);
if (isnorm == 0.0)
error->all(FLERR,"Incorrect initial rotation operation");
spkx *= isnorm;
spky *= isnorm;
spkz *= isnorm;
// returns rotated spin
sploc[0] = spkx;
sploc[1] = spky;
sploc[2] = spkz;
return rot_flag;
}
/* ----------------------------------------------------------------------
universe proc 0 opens NEBSpin data file
test if compressed
------------------------------------------------------------------------- */
void NEBSpin::open(char *file)
{
compressed = 0;
if (platform::has_compress_extension(file)) {
fp = platform::compressed_read(file);
if (!fp) error->one(FLERR,"Cannot open compressed file");
} else fp = fopen(file,"r");
if (fp == nullptr)
error->one(FLERR,"Cannot open file {}: {}",file,utils::getsyserror());
}
/* ----------------------------------------------------------------------
query fix NEBSpin for info on each replica
universe proc 0 prints current NEBSpin status
------------------------------------------------------------------------- */
void NEBSpin::print_status()
{
int nlocal = atom->nlocal;
double tx,ty,tz;
double tnorm2,local_norm_inf,temp_inf;
double **sp = atom->sp;
double **fm = atom->fm;
// calc. magnetic torques
tnorm2 = local_norm_inf = temp_inf = 0.0;
for (int i = 0; i < nlocal; i++) {
tx = (fm[i][1]*sp[i][2] - fm[i][2]*sp[i][1]);
ty = (fm[i][2]*sp[i][0] - fm[i][0]*sp[i][2]);
tz = (fm[i][0]*sp[i][1] - fm[i][1]*sp[i][0]);
tnorm2 += tx*tx + ty*ty + tz*tz;
temp_inf = MAX(fabs(tx),fabs(ty));
temp_inf = MAX(fabs(tz),temp_inf);
local_norm_inf = MAX(temp_inf,local_norm_inf);
}
double fmaxreplica = 0.0;
double fmaxatom = 0.0;
double fnorminf = 0.0;
MPI_Allreduce(&local_norm_inf,&fnorminf,1,MPI_DOUBLE,MPI_MAX,world);
if (me == 0) {
MPI_Allreduce(&tnorm2,&fmaxreplica,1,MPI_DOUBLE,MPI_MAX,roots);
MPI_Allreduce(&fnorminf,&fmaxatom,1,MPI_DOUBLE,MPI_MAX,roots);
if (verbose) {
freplica = new double[nreplica];
MPI_Allgather(&tnorm2,1,MPI_DOUBLE,&freplica[0],1,MPI_DOUBLE,roots);
fmaxatomInRepl = new double[nreplica];
MPI_Allgather(&fnorminf,1,MPI_DOUBLE,&fmaxatomInRepl[0],1,MPI_DOUBLE,roots);
}
}
double one[7];
one[0] = fneb->veng;
one[1] = fneb->plen;
one[2] = fneb->nlen;
one[3] = fneb->gradlen;
if (verbose) {
one[4] = fneb->dotpath;
one[5] = fneb->dottangrad;
one[6] = fneb->dotgrad;
}
if (output->thermo->normflag) one[0] /= atom->natoms;
if (me == 0)
MPI_Allgather(one,numall,MPI_DOUBLE,&all[0][0],numall,MPI_DOUBLE,roots);
MPI_Bcast(&all[0][0],numall*nreplica,MPI_DOUBLE,0,world);
rdist[0] = 0.0;
for (int i = 1; i < nreplica; i++)
rdist[i] = rdist[i-1] + all[i][1];
double endpt = rdist[nreplica-1] = rdist[nreplica-2] + all[nreplica-2][2];
for (int i = 1; i < nreplica; i++)
rdist[i] /= endpt;
// look up GradV for the initial, final, and climbing replicas
// these are identical to fnorm2, but to be safe we
// take them straight from fix_neb
double gradvnorm0, gradvnorm1, gradvnormc;
int irep;
irep = 0;
gradvnorm0 = all[irep][3];
irep = nreplica-1;
gradvnorm1 = all[irep][3];
irep = fneb->rclimber;
if (irep > -1) {
gradvnormc = all[irep][3];
ebf = all[irep][0]-all[0][0];
ebr = all[irep][0]-all[nreplica-1][0];
} else {
double vmax = all[0][0];
int top = 0;
for (int m = 1; m < nreplica; m++)
if (vmax < all[m][0]) {
vmax = all[m][0];
top = m;
}
irep = top;
gradvnormc = all[irep][3];
ebf = all[irep][0]-all[0][0];
ebr = all[irep][0]-all[nreplica-1][0];
}
if (me_universe == 0) {
FILE *uscreen = universe->uscreen;
FILE *ulogfile = universe->ulogfile;
if (uscreen) {
utils::print(uscreen,"{} {:12.8g} {:12.8g} ",update->ntimestep,fmaxreplica,fmaxatom);
fprintf(uscreen,"%12.8g %12.8g %12.8g ",gradvnorm0,gradvnorm1,gradvnormc);
fprintf(uscreen,"%12.8g %12.8g %12.8g ",ebf,ebr,endpt);
for (int i = 0; i < nreplica; i++)
fprintf(uscreen,"%12.8g %12.8g ",rdist[i],all[i][0]);
if (verbose) {
for (int i = 0; i < nreplica-1; i++)
fprintf(uscreen,"%12.8g %12.8g ",all[i][2],all[i][5]);
fprintf(uscreen,"%12.8g %12.8g ",NAN,all[nreplica-1][5]);
}
fprintf(uscreen,"\n");
}
if (ulogfile) {
utils::print(ulogfile,"{} {:12.8} {:12.8g} ",update->ntimestep,fmaxreplica,fmaxatom);
fprintf(ulogfile,"%12.8g %12.8g %12.8g ",gradvnorm0,gradvnorm1,gradvnormc);
fprintf(ulogfile,"%12.8g %12.8g %12.8g ",ebf,ebr,endpt);
for (int i = 0; i < nreplica; i++)
fprintf(ulogfile,"%12.8g %12.8g ",rdist[i],all[i][0]);
if (verbose) {
for (int i = 0; i < nreplica-1; i++)
fprintf(ulogfile,"%12.8g %12.8g ",all[i][2],all[i][5]);
fprintf(ulogfile,"%12.8g %12.8g ",NAN,all[nreplica-1][5]);
}
fprintf(ulogfile,"\n");
fflush(ulogfile);
}
if ((me == 0) && verbose) {
delete[] freplica;
delete[] fmaxatomInRepl;
}
}
}