963 lines
30 KiB
C++
963 lines
30 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Axel Kohlmeyer (Temple U)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "fix_rigid_nh_omp.h"
|
|
#include <mpi.h>
|
|
#include <cstring>
|
|
#include "atom.h"
|
|
#include "atom_vec_ellipsoid.h"
|
|
#include "atom_vec_line.h"
|
|
#include "atom_vec_tri.h"
|
|
#include "comm.h"
|
|
#include "compute.h"
|
|
#include "domain.h"
|
|
#include "error.h"
|
|
#include "force.h"
|
|
#include "kspace.h"
|
|
#include "modify.h"
|
|
#include "update.h"
|
|
#include "timer.h"
|
|
|
|
#if defined(_OPENMP)
|
|
#include <omp.h>
|
|
#endif
|
|
|
|
#include "math_extra.h"
|
|
#include "math_const.h"
|
|
#include "rigid_const.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
using namespace FixConst;
|
|
using namespace MathConst;
|
|
using namespace RigidConst;
|
|
|
|
typedef struct { double x,y,z; } dbl3_t;
|
|
|
|
/* ----------------------------------------------------------------------
|
|
perform preforce velocity Verlet integration
|
|
see Kamberaj paper for step references
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixRigidNHOMP::initial_integrate(int vflag)
|
|
{
|
|
double scale_r,scale_t[3],scale_v[3];
|
|
|
|
// compute scale variables
|
|
|
|
scale_t[0] = scale_t[1] = scale_t[2] = 1.0;
|
|
scale_v[0] = scale_v[1] = scale_v[2] = 1.0;
|
|
scale_r = 1.0;
|
|
|
|
if (tstat_flag) {
|
|
akin_t = akin_r = 0.0;
|
|
double tmp = exp(-dtq * eta_dot_t[0]);
|
|
scale_t[0] = scale_t[1] = scale_t[2] = tmp;
|
|
tmp = exp(-dtq * eta_dot_r[0]);
|
|
scale_r = tmp;
|
|
}
|
|
|
|
if (pstat_flag) {
|
|
akin_t = akin_r = 0.0;
|
|
scale_t[0] *= exp(-dtq * (epsilon_dot[0] + mtk_term2));
|
|
scale_t[1] *= exp(-dtq * (epsilon_dot[1] + mtk_term2));
|
|
scale_t[2] *= exp(-dtq * (epsilon_dot[2] + mtk_term2));
|
|
scale_r *= exp(-dtq * (pdim * mtk_term2));
|
|
|
|
double tmp = dtq * epsilon_dot[0];
|
|
scale_v[0] = dtv * exp(tmp) * maclaurin_series(tmp);
|
|
tmp = dtq * epsilon_dot[1];
|
|
scale_v[1] = dtv * exp(tmp) * maclaurin_series(tmp);
|
|
tmp = dtq * epsilon_dot[2];
|
|
scale_v[2] = dtv * exp(tmp) * maclaurin_series(tmp);
|
|
}
|
|
|
|
// update xcm, vcm, quat, conjqm and angmom
|
|
double akt=0.0, akr=0.0;
|
|
int ibody;
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel for default(none) private(ibody) shared(scale_r,scale_t,scale_v) schedule(static) reduction(+:akt,akr)
|
|
#endif
|
|
for (ibody = 0; ibody < nbody; ibody++) {
|
|
double mbody[3],tbody[3],fquat[4];
|
|
const double dtf2 = dtf * 2.0;
|
|
|
|
// step 1.1 - update vcm by 1/2 step
|
|
|
|
const double dtfm = dtf / masstotal[ibody];
|
|
vcm[ibody][0] += dtfm * fcm[ibody][0] * fflag[ibody][0];
|
|
vcm[ibody][1] += dtfm * fcm[ibody][1] * fflag[ibody][1];
|
|
vcm[ibody][2] += dtfm * fcm[ibody][2] * fflag[ibody][2];
|
|
|
|
if (tstat_flag || pstat_flag) {
|
|
vcm[ibody][0] *= scale_t[0];
|
|
vcm[ibody][1] *= scale_t[1];
|
|
vcm[ibody][2] *= scale_t[2];
|
|
|
|
double tmp = vcm[ibody][0]*vcm[ibody][0] + vcm[ibody][1]*vcm[ibody][1] +
|
|
vcm[ibody][2]*vcm[ibody][2];
|
|
akt += masstotal[ibody]*tmp;
|
|
}
|
|
|
|
// step 1.2 - update xcm by full step
|
|
|
|
if (!pstat_flag) {
|
|
xcm[ibody][0] += dtv * vcm[ibody][0];
|
|
xcm[ibody][1] += dtv * vcm[ibody][1];
|
|
xcm[ibody][2] += dtv * vcm[ibody][2];
|
|
} else {
|
|
xcm[ibody][0] += scale_v[0] * vcm[ibody][0];
|
|
xcm[ibody][1] += scale_v[1] * vcm[ibody][1];
|
|
xcm[ibody][2] += scale_v[2] * vcm[ibody][2];
|
|
}
|
|
|
|
// step 1.3 - apply torque (body coords) to quaternion momentum
|
|
|
|
torque[ibody][0] *= tflag[ibody][0];
|
|
torque[ibody][1] *= tflag[ibody][1];
|
|
torque[ibody][2] *= tflag[ibody][2];
|
|
|
|
MathExtra::transpose_matvec(ex_space[ibody],ey_space[ibody],ez_space[ibody],
|
|
torque[ibody],tbody);
|
|
MathExtra::quatvec(quat[ibody],tbody,fquat);
|
|
|
|
conjqm[ibody][0] += dtf2 * fquat[0];
|
|
conjqm[ibody][1] += dtf2 * fquat[1];
|
|
conjqm[ibody][2] += dtf2 * fquat[2];
|
|
conjqm[ibody][3] += dtf2 * fquat[3];
|
|
|
|
if (tstat_flag || pstat_flag) {
|
|
conjqm[ibody][0] *= scale_r;
|
|
conjqm[ibody][1] *= scale_r;
|
|
conjqm[ibody][2] *= scale_r;
|
|
conjqm[ibody][3] *= scale_r;
|
|
}
|
|
|
|
// step 1.4 to 1.13 - use no_squish rotate to update p and q
|
|
|
|
MathExtra::no_squish_rotate(3,conjqm[ibody],quat[ibody],inertia[ibody],dtq);
|
|
MathExtra::no_squish_rotate(2,conjqm[ibody],quat[ibody],inertia[ibody],dtq);
|
|
MathExtra::no_squish_rotate(1,conjqm[ibody],quat[ibody],inertia[ibody],dtv);
|
|
MathExtra::no_squish_rotate(2,conjqm[ibody],quat[ibody],inertia[ibody],dtq);
|
|
MathExtra::no_squish_rotate(3,conjqm[ibody],quat[ibody],inertia[ibody],dtq);
|
|
|
|
// update exyz_space
|
|
// transform p back to angmom
|
|
// update angular velocity
|
|
|
|
MathExtra::q_to_exyz(quat[ibody],ex_space[ibody],ey_space[ibody],
|
|
ez_space[ibody]);
|
|
MathExtra::invquatvec(quat[ibody],conjqm[ibody],mbody);
|
|
MathExtra::matvec(ex_space[ibody],ey_space[ibody],ez_space[ibody],
|
|
mbody,angmom[ibody]);
|
|
|
|
angmom[ibody][0] *= 0.5;
|
|
angmom[ibody][1] *= 0.5;
|
|
angmom[ibody][2] *= 0.5;
|
|
|
|
MathExtra::angmom_to_omega(angmom[ibody],ex_space[ibody],ey_space[ibody],
|
|
ez_space[ibody],inertia[ibody],omega[ibody]);
|
|
|
|
if (tstat_flag || pstat_flag) {
|
|
akr += angmom[ibody][0]*omega[ibody][0] +
|
|
angmom[ibody][1]*omega[ibody][1] + angmom[ibody][2]*omega[ibody][2];
|
|
}
|
|
} // end of parallel for
|
|
|
|
if (pstat_flag || tstat_flag) {
|
|
akin_t = akt;
|
|
akin_r = akr;
|
|
}
|
|
|
|
// compute target temperature
|
|
// update thermostat chains using akin_t and akin_r
|
|
// refer to update_nhcp() in Kamberaj et al.
|
|
|
|
if (tstat_flag) {
|
|
compute_temp_target();
|
|
nhc_temp_integrate();
|
|
}
|
|
|
|
// update thermostat chains coupled with barostat
|
|
// refer to update_nhcb() in Kamberaj et al.
|
|
|
|
if (pstat_flag) {
|
|
nhc_press_integrate();
|
|
}
|
|
|
|
// virial setup before call to set_xv
|
|
|
|
if (vflag) v_setup(vflag);
|
|
else evflag = 0;
|
|
|
|
// remap simulation box by 1/2 step
|
|
|
|
if (pstat_flag) remap();
|
|
|
|
// set coords/orient and velocity/rotation of atoms in rigid bodies
|
|
// from quarternion and omega
|
|
|
|
if (triclinic)
|
|
if (evflag)
|
|
set_xv_thr<1,1>();
|
|
else
|
|
set_xv_thr<1,0>();
|
|
else
|
|
if (evflag)
|
|
set_xv_thr<0,1>();
|
|
else
|
|
set_xv_thr<0,0>();
|
|
|
|
// remap simulation box by full step
|
|
// redo KSpace coeffs since volume has changed
|
|
|
|
if (pstat_flag) {
|
|
remap();
|
|
if (kspace_flag) force->kspace->setup();
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixRigidNHOMP::compute_forces_and_torques()
|
|
{
|
|
int ibody;
|
|
|
|
double * const * _noalias const x = atom->x;
|
|
const dbl3_t * _noalias const f = (dbl3_t *) atom->f[0];
|
|
const double * const * const torque_one = atom->torque;
|
|
const int nlocal = atom->nlocal;
|
|
|
|
// sum over atoms to get force and torque on rigid body
|
|
// we have 3 different strategies for multi-threading this.
|
|
|
|
if (rstyle == SINGLE) {
|
|
// we have just one rigid body. use OpenMP reduction to get sum[]
|
|
double s0=0.0,s1=0.0,s2=0.0,s3=0.0,s4=0.0,s5=0.0;
|
|
int i;
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel for default(none) private(i) reduction(+:s0,s1,s2,s3,s4,s5)
|
|
#endif
|
|
for (i = 0; i < nlocal; i++) {
|
|
const int ibody = body[i];
|
|
if (ibody < 0) continue;
|
|
|
|
double unwrap[3];
|
|
domain->unmap(x[i],xcmimage[i],unwrap);
|
|
const double dx = unwrap[0] - xcm[0][0];
|
|
const double dy = unwrap[1] - xcm[0][1];
|
|
const double dz = unwrap[2] - xcm[0][2];
|
|
|
|
s0 += f[i].x;
|
|
s1 += f[i].y;
|
|
s2 += f[i].z;
|
|
|
|
s3 += dy*f[i].z - dz*f[i].y;
|
|
s4 += dz*f[i].x - dx*f[i].z;
|
|
s5 += dx*f[i].y - dy*f[i].x;
|
|
|
|
if (extended && (eflags[i] & TORQUE)) {
|
|
s3 += torque_one[i][0];
|
|
s4 += torque_one[i][1];
|
|
s5 += torque_one[i][2];
|
|
}
|
|
}
|
|
sum[0][0]=s0; sum[0][1]=s1; sum[0][2]=s2;
|
|
sum[0][3]=s3; sum[0][4]=s4; sum[0][5]=s5;
|
|
|
|
} else if (rstyle == GROUP) {
|
|
|
|
// we likely have only a rather number of groups so we loops
|
|
// over bodies and thread over all atoms for each of them.
|
|
|
|
for (int ib = 0; ib < nbody; ++ib) {
|
|
double s0=0.0,s1=0.0,s2=0.0,s3=0.0,s4=0.0,s5=0.0;
|
|
int i;
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel for default(none) private(i) shared(ib) reduction(+:s0,s1,s2,s3,s4,s5)
|
|
#endif
|
|
for (i = 0; i < nlocal; i++) {
|
|
const int ibody = body[i];
|
|
if (ibody != ib) continue;
|
|
|
|
s0 += f[i].x;
|
|
s1 += f[i].y;
|
|
s2 += f[i].z;
|
|
|
|
double unwrap[3];
|
|
domain->unmap(x[i],xcmimage[i],unwrap);
|
|
const double dx = unwrap[0] - xcm[ibody][0];
|
|
const double dy = unwrap[1] - xcm[ibody][1];
|
|
const double dz = unwrap[2] - xcm[ibody][2];
|
|
|
|
s3 += dy*f[i].z - dz*f[i].y;
|
|
s4 += dz*f[i].x - dx*f[i].z;
|
|
s5 += dx*f[i].y - dy*f[i].x;
|
|
|
|
if (extended && (eflags[i] & TORQUE)) {
|
|
s3 += torque_one[i][0];
|
|
s4 += torque_one[i][1];
|
|
s5 += torque_one[i][2];
|
|
}
|
|
}
|
|
|
|
sum[ib][0]=s0; sum[ib][1]=s1; sum[ib][2]=s2;
|
|
sum[ib][3]=s3; sum[ib][4]=s4; sum[ib][5]=s5;
|
|
}
|
|
|
|
} else if (rstyle == MOLECULE) {
|
|
|
|
// we likely have a large number of rigid objects with only a
|
|
// a few atoms each. so we loop over all atoms for all threads
|
|
// and then each thread only processes some bodies.
|
|
|
|
const int nthreads=comm->nthreads;
|
|
memset(&sum[0][0],0,6*nbody*sizeof(double));
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel default(none)
|
|
#endif
|
|
{
|
|
#if defined(_OPENMP)
|
|
const int tid = omp_get_thread_num();
|
|
#else
|
|
const int tid = 0;
|
|
#endif
|
|
|
|
for (int i = 0; i < nlocal; i++) {
|
|
const int ibody = body[i];
|
|
if ((ibody < 0) || (ibody % nthreads != tid)) continue;
|
|
|
|
double unwrap[3];
|
|
domain->unmap(x[i],xcmimage[i],unwrap);
|
|
const double dx = unwrap[0] - xcm[ibody][0];
|
|
const double dy = unwrap[1] - xcm[ibody][1];
|
|
const double dz = unwrap[2] - xcm[ibody][2];
|
|
|
|
const double s0 = f[i].x;
|
|
const double s1 = f[i].y;
|
|
const double s2 = f[i].z;
|
|
|
|
double s3 = dy*s2 - dz*s1;
|
|
double s4 = dz*s0 - dx*s2;
|
|
double s5 = dx*s1 - dy*s0;
|
|
|
|
if (extended && (eflags[i] & TORQUE)) {
|
|
s3 += torque_one[i][0];
|
|
s4 += torque_one[i][1];
|
|
s5 += torque_one[i][2];
|
|
}
|
|
|
|
sum[ibody][0] += s0; sum[ibody][1] += s1; sum[ibody][2] += s2;
|
|
sum[ibody][3] += s3; sum[ibody][4] += s4; sum[ibody][5] += s5;
|
|
}
|
|
}
|
|
} else
|
|
error->all(FLERR,"rigid style is unsupported by fix rigid/omp");
|
|
|
|
MPI_Allreduce(sum[0],all[0],6*nbody,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel for default(none) private(ibody) schedule(static)
|
|
#endif
|
|
for (ibody = 0; ibody < nbody; ibody++) {
|
|
fcm[ibody][0] = all[ibody][0] + langextra[ibody][0];
|
|
fcm[ibody][1] = all[ibody][1] + langextra[ibody][1];
|
|
fcm[ibody][2] = all[ibody][2] + langextra[ibody][2];
|
|
torque[ibody][0] = all[ibody][3] + langextra[ibody][3];
|
|
torque[ibody][1] = all[ibody][4] + langextra[ibody][4];
|
|
torque[ibody][2] = all[ibody][5] + langextra[ibody][5];
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixRigidNHOMP::final_integrate()
|
|
{
|
|
int ibody;
|
|
double scale_t[3],scale_r;
|
|
|
|
// compute scale variables
|
|
|
|
scale_t[0] = scale_t[1] = scale_t[2] = 1.0;
|
|
scale_r = 1.0;
|
|
|
|
if (tstat_flag) {
|
|
double tmp = exp(-1.0 * dtq * eta_dot_t[0]);
|
|
scale_t[0] = scale_t[1] = scale_t[2] = tmp;
|
|
scale_r = exp(-1.0 * dtq * eta_dot_r[0]);
|
|
}
|
|
|
|
if (pstat_flag) {
|
|
scale_t[0] *= exp(-dtq * (epsilon_dot[0] + mtk_term2));
|
|
scale_t[1] *= exp(-dtq * (epsilon_dot[1] + mtk_term2));
|
|
scale_t[2] *= exp(-dtq * (epsilon_dot[2] + mtk_term2));
|
|
scale_r *= exp(-dtq * (pdim * mtk_term2));
|
|
|
|
akin_t = akin_r = 0.0;
|
|
}
|
|
|
|
if (!earlyflag) compute_forces_and_torques();
|
|
|
|
// update vcm and angmom
|
|
// include Langevin thermostat forces
|
|
// fflag,tflag = 0 for some dimensions in 2d
|
|
double akt=0.0,akr=0.0;
|
|
const double dtf2 = dtf * 2.0;
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel for default(none) private(ibody) shared(scale_t,scale_r) schedule(static) reduction(+:akt,akr)
|
|
#endif
|
|
for (ibody = 0; ibody < nbody; ibody++) {
|
|
double mbody[3],tbody[3],fquat[4];
|
|
|
|
// update vcm by 1/2 step
|
|
|
|
const double dtfm = dtf / masstotal[ibody];
|
|
if (tstat_flag || pstat_flag) {
|
|
vcm[ibody][0] *= scale_t[0];
|
|
vcm[ibody][1] *= scale_t[1];
|
|
vcm[ibody][2] *= scale_t[2];
|
|
}
|
|
|
|
vcm[ibody][0] += dtfm * fcm[ibody][0] * fflag[ibody][0];
|
|
vcm[ibody][1] += dtfm * fcm[ibody][1] * fflag[ibody][1];
|
|
vcm[ibody][2] += dtfm * fcm[ibody][2] * fflag[ibody][2];
|
|
|
|
if (pstat_flag) {
|
|
double tmp = vcm[ibody][0]*vcm[ibody][0] + vcm[ibody][1]*vcm[ibody][1] +
|
|
vcm[ibody][2]*vcm[ibody][2];
|
|
akt += masstotal[ibody]*tmp;
|
|
}
|
|
|
|
// update conjqm, then transform to angmom, set velocity again
|
|
// virial is already setup from initial_integrate
|
|
|
|
torque[ibody][0] *= tflag[ibody][0];
|
|
torque[ibody][1] *= tflag[ibody][1];
|
|
torque[ibody][2] *= tflag[ibody][2];
|
|
|
|
MathExtra::transpose_matvec(ex_space[ibody],ey_space[ibody],
|
|
ez_space[ibody],torque[ibody],tbody);
|
|
MathExtra::quatvec(quat[ibody],tbody,fquat);
|
|
|
|
if (tstat_flag || pstat_flag) {
|
|
conjqm[ibody][0] = scale_r * conjqm[ibody][0] + dtf2 * fquat[0];
|
|
conjqm[ibody][1] = scale_r * conjqm[ibody][1] + dtf2 * fquat[1];
|
|
conjqm[ibody][2] = scale_r * conjqm[ibody][2] + dtf2 * fquat[2];
|
|
conjqm[ibody][3] = scale_r * conjqm[ibody][3] + dtf2 * fquat[3];
|
|
} else {
|
|
conjqm[ibody][0] += dtf2 * fquat[0];
|
|
conjqm[ibody][1] += dtf2 * fquat[1];
|
|
conjqm[ibody][2] += dtf2 * fquat[2];
|
|
conjqm[ibody][3] += dtf2 * fquat[3];
|
|
}
|
|
|
|
MathExtra::invquatvec(quat[ibody],conjqm[ibody],mbody);
|
|
MathExtra::matvec(ex_space[ibody],ey_space[ibody],ez_space[ibody],
|
|
mbody,angmom[ibody]);
|
|
|
|
angmom[ibody][0] *= 0.5;
|
|
angmom[ibody][1] *= 0.5;
|
|
angmom[ibody][2] *= 0.5;
|
|
|
|
MathExtra::angmom_to_omega(angmom[ibody],ex_space[ibody],ey_space[ibody],
|
|
ez_space[ibody],inertia[ibody],omega[ibody]);
|
|
|
|
if (pstat_flag) {
|
|
akr += angmom[ibody][0]*omega[ibody][0] +
|
|
angmom[ibody][1]*omega[ibody][1] +
|
|
angmom[ibody][2]*omega[ibody][2];
|
|
}
|
|
} // end of parallel for
|
|
if (pstat_flag) {
|
|
akin_t += akt;
|
|
akin_r += akr;
|
|
}
|
|
|
|
// set velocity/rotation of atoms in rigid bodies
|
|
// virial is already setup from initial_integrate
|
|
// triclinic only matters for virial calculation.
|
|
|
|
if (evflag)
|
|
if (triclinic)
|
|
set_v_thr<1,1>();
|
|
else
|
|
set_v_thr<0,1>();
|
|
else
|
|
set_v_thr<0,0>();
|
|
|
|
// compute current temperature
|
|
if (tcomputeflag) t_current = temperature->compute_scalar();
|
|
|
|
// compute current and target pressures
|
|
// update epsilon dot using akin_t and akin_r
|
|
|
|
if (pstat_flag) {
|
|
if (pstyle == ISO) {
|
|
temperature->compute_scalar();
|
|
pressure->compute_scalar();
|
|
} else {
|
|
temperature->compute_vector();
|
|
pressure->compute_vector();
|
|
}
|
|
couple();
|
|
pressure->addstep(update->ntimestep+1);
|
|
|
|
compute_press_target();
|
|
|
|
nh_epsilon_dot();
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixRigidNHOMP::remap()
|
|
{
|
|
double * const * _noalias const x = atom->x;
|
|
const int * _noalias const mask = atom->mask;
|
|
const int nlocal = atom->nlocal;
|
|
|
|
// epsilon is not used, except for book-keeping
|
|
|
|
for (int i = 0; i < 3; i++) epsilon[i] += dtq * epsilon_dot[i];
|
|
|
|
// convert pertinent atoms and rigid bodies to lamda coords
|
|
|
|
if (allremap) domain->x2lamda(nlocal);
|
|
else {
|
|
int i;
|
|
#if defined (_OPENMP)
|
|
#pragma omp parallel for private(i) default(none) schedule(static)
|
|
#endif
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & dilate_group_bit)
|
|
domain->x2lamda(x[i],x[i]);
|
|
}
|
|
|
|
if (nrigid)
|
|
for (int i = 0; i < nrigidfix; i++)
|
|
modify->fix[rfix[i]]->deform(0);
|
|
|
|
// reset global and local box to new size/shape
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
if (p_flag[i]) {
|
|
const double oldlo = domain->boxlo[i];
|
|
const double oldhi = domain->boxhi[i];
|
|
const double ctr = 0.5 * (oldlo + oldhi);
|
|
const double expfac = exp(dtq * epsilon_dot[i]);
|
|
domain->boxlo[i] = (oldlo-ctr)*expfac + ctr;
|
|
domain->boxhi[i] = (oldhi-ctr)*expfac + ctr;
|
|
}
|
|
}
|
|
|
|
domain->set_global_box();
|
|
domain->set_local_box();
|
|
|
|
// convert pertinent atoms and rigid bodies back to box coords
|
|
|
|
if (allremap) domain->lamda2x(nlocal);
|
|
else {
|
|
int i;
|
|
#if defined (_OPENMP)
|
|
#pragma omp parallel for private(i) default(none) schedule(static)
|
|
#endif
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & dilate_group_bit)
|
|
domain->lamda2x(x[i],x[i]);
|
|
}
|
|
|
|
if (nrigid)
|
|
for (int i = 0; i< nrigidfix; i++)
|
|
modify->fix[rfix[i]]->deform(1);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set space-frame coords and velocity of each atom in each rigid body
|
|
set orientation and rotation of extended particles
|
|
x = Q displace + Xcm, mapped back to periodic box
|
|
v = Vcm + (W cross (x - Xcm))
|
|
|
|
NOTE: this needs to be kept in sync with FixRigidOMP
|
|
------------------------------------------------------------------------- */
|
|
template <int TRICLINIC, int EVFLAG>
|
|
void FixRigidNHOMP::set_xv_thr()
|
|
{
|
|
dbl3_t * _noalias const x = (dbl3_t *) atom->x[0];
|
|
dbl3_t * _noalias const v = (dbl3_t *) atom->v[0];
|
|
const dbl3_t * _noalias const f = (dbl3_t *) atom->f[0];
|
|
const double * _noalias const rmass = atom->rmass;
|
|
const double * _noalias const mass = atom->mass;
|
|
const int * _noalias const type = atom->type;
|
|
|
|
double v0=0.0,v1=0.0,v2=0.0,v3=0.0,v4=0.0,v5=0.0;
|
|
|
|
const double xprd = domain->xprd;
|
|
const double yprd = domain->yprd;
|
|
const double zprd = domain->zprd;
|
|
const double xy = domain->xy;
|
|
const double xz = domain->xz;
|
|
const double yz = domain->yz;
|
|
|
|
// set x and v of each atom
|
|
|
|
const int nlocal = atom->nlocal;
|
|
int i;
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel for default(none) private(i) reduction(+:v0,v1,v2,v3,v4,v5)
|
|
#endif
|
|
for (i = 0; i < nlocal; i++) {
|
|
const int ibody = body[i];
|
|
if (ibody < 0) continue;
|
|
|
|
const dbl3_t &xcmi = * ((dbl3_t *) xcm[ibody]);
|
|
const dbl3_t &vcmi = * ((dbl3_t *) vcm[ibody]);
|
|
const dbl3_t &omegai = * ((dbl3_t *) omega[ibody]);
|
|
|
|
const int xbox = (xcmimage[i] & IMGMASK) - IMGMAX;
|
|
const int ybox = (xcmimage[i] >> IMGBITS & IMGMASK) - IMGMAX;
|
|
const int zbox = (xcmimage[i] >> IMG2BITS) - IMGMAX;
|
|
const double deltax = xbox*xprd + (TRICLINIC ? ybox*xy + zbox*xz : 0.0);
|
|
const double deltay = ybox*yprd + (TRICLINIC ? zbox*yz : 0.0);
|
|
const double deltaz = zbox*zprd;
|
|
|
|
// save old positions and velocities for virial
|
|
double x0,x1,x2,vx,vy,vz;
|
|
if (EVFLAG) {
|
|
x0 = x[i].x + deltax;
|
|
x1 = x[i].y + deltay;
|
|
x2 = x[i].z + deltaz;
|
|
vx = v[i].x;
|
|
vy = v[i].y;
|
|
vz = v[i].z;
|
|
}
|
|
|
|
// x = displacement from center-of-mass, based on body orientation
|
|
// v = vcm + omega around center-of-mass
|
|
|
|
MathExtra::matvec(ex_space[ibody],ey_space[ibody],
|
|
ez_space[ibody],displace[i],&x[i].x);
|
|
|
|
v[i].x = omegai.y*x[i].z - omegai.z*x[i].y + vcmi.x;
|
|
v[i].y = omegai.z*x[i].x - omegai.x*x[i].z + vcmi.y;
|
|
v[i].z = omegai.x*x[i].y - omegai.y*x[i].x + vcmi.z;
|
|
|
|
// add center of mass to displacement
|
|
// map back into periodic box via xbox,ybox,zbox
|
|
// for triclinic, add in box tilt factors as well
|
|
|
|
x[i].x += xcmi.x - deltax;
|
|
x[i].y += xcmi.y - deltay;
|
|
x[i].z += xcmi.z - deltaz;
|
|
|
|
// virial = unwrapped coords dotted into body constraint force
|
|
// body constraint force = implied force due to v change minus f external
|
|
// assume f does not include forces internal to body
|
|
// 1/2 factor b/c final_integrate contributes other half
|
|
// assume per-atom contribution is due to constraint force on that atom
|
|
|
|
if (EVFLAG) {
|
|
double massone,vr[6];
|
|
|
|
if (rmass) massone = rmass[i];
|
|
else massone = mass[type[i]];
|
|
|
|
const double fc0 = 0.5*(massone*(v[i].x - vx)/dtf - f[i].x);
|
|
const double fc1 = 0.5*(massone*(v[i].y - vy)/dtf - f[i].y);
|
|
const double fc2 = 0.5*(massone*(v[i].z - vz)/dtf - f[i].z);
|
|
|
|
vr[0] = x0*fc0; vr[1] = x1*fc1; vr[2] = x2*fc2;
|
|
vr[3] = x0*fc1; vr[4] = x0*fc2; vr[5] = x1*fc2;
|
|
|
|
// Fix::v_tally() is not thread safe, so we do this manually here
|
|
// accumulate global virial into thread-local variables for reduction
|
|
if (vflag_global) {
|
|
v0 += vr[0];
|
|
v1 += vr[1];
|
|
v2 += vr[2];
|
|
v3 += vr[3];
|
|
v4 += vr[4];
|
|
v5 += vr[5];
|
|
}
|
|
|
|
// accumulate per atom virial directly since we parallelize over atoms.
|
|
if (vflag_atom) {
|
|
vatom[i][0] += vr[0];
|
|
vatom[i][1] += vr[1];
|
|
vatom[i][2] += vr[2];
|
|
vatom[i][3] += vr[3];
|
|
vatom[i][4] += vr[4];
|
|
vatom[i][5] += vr[5];
|
|
}
|
|
}
|
|
}
|
|
|
|
// second part of thread safe virial accumulation
|
|
// add global virial component after it was reduced across all threads
|
|
if (EVFLAG) {
|
|
if (vflag_global) {
|
|
virial[0] += v0;
|
|
virial[1] += v1;
|
|
virial[2] += v2;
|
|
virial[3] += v3;
|
|
virial[4] += v4;
|
|
virial[5] += v5;
|
|
}
|
|
}
|
|
|
|
// set orientation, omega, angmom of each extended particle
|
|
// XXX: extended particle info not yet multi-threaded
|
|
|
|
if (extended) {
|
|
double *shape,*quatatom,*inertiaatom;
|
|
double theta_body,theta;
|
|
double ione[3],exone[3],eyone[3],ezone[3],p[3][3];
|
|
|
|
AtomVecEllipsoid::Bonus *ebonus;
|
|
if (avec_ellipsoid) ebonus = avec_ellipsoid->bonus;
|
|
AtomVecLine::Bonus *lbonus;
|
|
if (avec_line) lbonus = avec_line->bonus;
|
|
AtomVecTri::Bonus *tbonus;
|
|
if (avec_tri) tbonus = avec_tri->bonus;
|
|
double **omega_one = atom->omega;
|
|
double **angmom_one = atom->angmom;
|
|
double **mu = atom->mu;
|
|
int *ellipsoid = atom->ellipsoid;
|
|
int *line = atom->line;
|
|
int *tri = atom->tri;
|
|
|
|
for (int i = 0; i < nlocal; i++) {
|
|
const int ibody = body[i];
|
|
if (ibody < 0) continue;
|
|
|
|
if (eflags[i] & SPHERE) {
|
|
omega_one[i][0] = omega[ibody][0];
|
|
omega_one[i][1] = omega[ibody][1];
|
|
omega_one[i][2] = omega[ibody][2];
|
|
} else if (eflags[i] & ELLIPSOID) {
|
|
shape = ebonus[ellipsoid[i]].shape;
|
|
quatatom = ebonus[ellipsoid[i]].quat;
|
|
MathExtra::quatquat(quat[ibody],orient[i],quatatom);
|
|
MathExtra::qnormalize(quatatom);
|
|
ione[0] = EINERTIA*rmass[i] * (shape[1]*shape[1] + shape[2]*shape[2]);
|
|
ione[1] = EINERTIA*rmass[i] * (shape[0]*shape[0] + shape[2]*shape[2]);
|
|
ione[2] = EINERTIA*rmass[i] * (shape[0]*shape[0] + shape[1]*shape[1]);
|
|
MathExtra::q_to_exyz(quatatom,exone,eyone,ezone);
|
|
MathExtra::omega_to_angmom(omega[ibody],exone,eyone,ezone,ione,
|
|
angmom_one[i]);
|
|
} else if (eflags[i] & LINE) {
|
|
if (quat[ibody][3] >= 0.0) theta_body = 2.0*acos(quat[ibody][0]);
|
|
else theta_body = -2.0*acos(quat[ibody][0]);
|
|
theta = orient[i][0] + theta_body;
|
|
while (theta <= -MY_PI) theta += MY_2PI;
|
|
while (theta > MY_PI) theta -= MY_2PI;
|
|
lbonus[line[i]].theta = theta;
|
|
omega_one[i][0] = omega[ibody][0];
|
|
omega_one[i][1] = omega[ibody][1];
|
|
omega_one[i][2] = omega[ibody][2];
|
|
} else if (eflags[i] & TRIANGLE) {
|
|
inertiaatom = tbonus[tri[i]].inertia;
|
|
quatatom = tbonus[tri[i]].quat;
|
|
MathExtra::quatquat(quat[ibody],orient[i],quatatom);
|
|
MathExtra::qnormalize(quatatom);
|
|
MathExtra::q_to_exyz(quatatom,exone,eyone,ezone);
|
|
MathExtra::omega_to_angmom(omega[ibody],exone,eyone,ezone,
|
|
inertiaatom,angmom_one[i]);
|
|
}
|
|
if (eflags[i] & DIPOLE) {
|
|
MathExtra::quat_to_mat(quat[ibody],p);
|
|
MathExtra::matvec(p,dorient[i],mu[i]);
|
|
MathExtra::snormalize3(mu[i][3],mu[i],mu[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set space-frame velocity of each atom in a rigid body
|
|
set omega and angmom of extended particles
|
|
v = Vcm + (W cross (x - Xcm))
|
|
|
|
NOTE: this needs to be kept in sync with FixRigidOMP
|
|
------------------------------------------------------------------------- */
|
|
template <int TRICLINIC, int EVFLAG>
|
|
void FixRigidNHOMP::set_v_thr()
|
|
{
|
|
dbl3_t * _noalias const x = (dbl3_t *) atom->x[0];
|
|
dbl3_t * _noalias const v = (dbl3_t *) atom->v[0];
|
|
const dbl3_t * _noalias const f = (dbl3_t *) atom->f[0];
|
|
const double * _noalias const rmass = atom->rmass;
|
|
const double * _noalias const mass = atom->mass;
|
|
const int * _noalias const type = atom->type;
|
|
|
|
const double xprd = domain->xprd;
|
|
const double yprd = domain->yprd;
|
|
const double zprd = domain->zprd;
|
|
const double xy = domain->xy;
|
|
const double xz = domain->xz;
|
|
const double yz = domain->yz;
|
|
|
|
double v0=0.0,v1=0.0,v2=0.0,v3=0.0,v4=0.0,v5=0.0;
|
|
|
|
// set v of each atom
|
|
|
|
const int nlocal = atom->nlocal;
|
|
int i;
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel for default(none) private(i) reduction(+:v0,v1,v2,v3,v4,v5)
|
|
#endif
|
|
for (i = 0; i < nlocal; i++) {
|
|
const int ibody = body[i];
|
|
if (ibody < 0) continue;
|
|
|
|
const dbl3_t &vcmi = * ((dbl3_t *) vcm[ibody]);
|
|
const dbl3_t &omegai = * ((dbl3_t *) omega[ibody]);
|
|
double delta[3],vx,vy,vz;
|
|
|
|
MathExtra::matvec(ex_space[ibody],ey_space[ibody],
|
|
ez_space[ibody],displace[i],delta);
|
|
|
|
// save old velocities for virial
|
|
|
|
if (EVFLAG) {
|
|
vx = v[i].x;
|
|
vy = v[i].y;
|
|
vz = v[i].z;
|
|
}
|
|
|
|
v[i].x = omegai.y*delta[2] - omegai.z*delta[1] + vcmi.x;
|
|
v[i].y = omegai.z*delta[0] - omegai.x*delta[2] + vcmi.y;
|
|
v[i].z = omegai.x*delta[1] - omegai.y*delta[0] + vcmi.z;
|
|
|
|
// virial = unwrapped coords dotted into body constraint force
|
|
// body constraint force = implied force due to v change minus f external
|
|
// assume f does not include forces internal to body
|
|
// 1/2 factor b/c initial_integrate contributes other half
|
|
// assume per-atom contribution is due to constraint force on that atom
|
|
|
|
if (EVFLAG) {
|
|
double massone, vr[6];
|
|
if (rmass) massone = rmass[i];
|
|
else massone = mass[type[i]];
|
|
|
|
const int xbox = (xcmimage[i] & IMGMASK) - IMGMAX;
|
|
const int ybox = (xcmimage[i] >> IMGBITS & IMGMASK) - IMGMAX;
|
|
const int zbox = (xcmimage[i] >> IMG2BITS) - IMGMAX;
|
|
const double deltax = xbox*xprd + (TRICLINIC ? ybox*xy + zbox*xz : 0.0);
|
|
const double deltay = ybox*yprd + (TRICLINIC ? zbox*yz : 0.0);
|
|
const double deltaz = zbox*zprd;
|
|
|
|
const double fc0 = 0.5*(massone*(v[i].x - vx)/dtf - f[i].x);
|
|
const double fc1 = 0.5*(massone*(v[i].y - vy)/dtf - f[i].y);
|
|
const double fc2 = 0.5*(massone*(v[i].z - vz)/dtf - f[i].z);
|
|
|
|
const double x0 = x[i].x + deltax;
|
|
const double x1 = x[i].y + deltay;
|
|
const double x2 = x[i].z + deltaz;
|
|
|
|
vr[0] = x0*fc0; vr[1] = x1*fc1; vr[2] = x2*fc2;
|
|
vr[3] = x0*fc1; vr[4] = x0*fc2; vr[5] = x1*fc2;
|
|
|
|
// Fix::v_tally() is not thread safe, so we do this manually here
|
|
// accumulate global virial into thread-local variables and reduce them later
|
|
if (vflag_global) {
|
|
v0 += vr[0];
|
|
v1 += vr[1];
|
|
v2 += vr[2];
|
|
v3 += vr[3];
|
|
v4 += vr[4];
|
|
v5 += vr[5];
|
|
}
|
|
|
|
// accumulate per atom virial directly since we parallelize over atoms.
|
|
if (vflag_atom) {
|
|
vatom[i][0] += vr[0];
|
|
vatom[i][1] += vr[1];
|
|
vatom[i][2] += vr[2];
|
|
vatom[i][3] += vr[3];
|
|
vatom[i][4] += vr[4];
|
|
vatom[i][5] += vr[5];
|
|
}
|
|
}
|
|
} // end of parallel for
|
|
|
|
// second part of thread safe virial accumulation
|
|
// add global virial component after it was reduced across all threads
|
|
if (EVFLAG) {
|
|
if (vflag_global) {
|
|
virial[0] += v0;
|
|
virial[1] += v1;
|
|
virial[2] += v2;
|
|
virial[3] += v3;
|
|
virial[4] += v4;
|
|
virial[5] += v5;
|
|
}
|
|
}
|
|
|
|
// set omega, angmom of each extended particle
|
|
// XXX: extended particle info not yet multi-threaded
|
|
|
|
if (extended) {
|
|
double *shape,*quatatom,*inertiaatom;
|
|
double ione[3],exone[3],eyone[3],ezone[3];
|
|
|
|
AtomVecEllipsoid::Bonus *ebonus;
|
|
if (avec_ellipsoid) ebonus = avec_ellipsoid->bonus;
|
|
AtomVecTri::Bonus *tbonus;
|
|
if (avec_tri) tbonus = avec_tri->bonus;
|
|
double **omega_one = atom->omega;
|
|
double **angmom_one = atom->angmom;
|
|
int *ellipsoid = atom->ellipsoid;
|
|
int *tri = atom->tri;
|
|
|
|
for (int i = 0; i < nlocal; i++) {
|
|
const int ibody = body[i];
|
|
if (ibody < 0) continue;
|
|
|
|
if (eflags[i] & SPHERE) {
|
|
omega_one[i][0] = omega[ibody][0];
|
|
omega_one[i][1] = omega[ibody][1];
|
|
omega_one[i][2] = omega[ibody][2];
|
|
} else if (eflags[i] & ELLIPSOID) {
|
|
shape = ebonus[ellipsoid[i]].shape;
|
|
quatatom = ebonus[ellipsoid[i]].quat;
|
|
ione[0] = EINERTIA*rmass[i] * (shape[1]*shape[1] + shape[2]*shape[2]);
|
|
ione[1] = EINERTIA*rmass[i] * (shape[0]*shape[0] + shape[2]*shape[2]);
|
|
ione[2] = EINERTIA*rmass[i] * (shape[0]*shape[0] + shape[1]*shape[1]);
|
|
MathExtra::q_to_exyz(quatatom,exone,eyone,ezone);
|
|
MathExtra::omega_to_angmom(omega[ibody],exone,eyone,ezone,ione,
|
|
angmom_one[i]);
|
|
} else if (eflags[i] & LINE) {
|
|
omega_one[i][0] = omega[ibody][0];
|
|
omega_one[i][1] = omega[ibody][1];
|
|
omega_one[i][2] = omega[ibody][2];
|
|
} else if (eflags[i] & TRIANGLE) {
|
|
inertiaatom = tbonus[tri[i]].inertia;
|
|
quatatom = tbonus[tri[i]].quat;
|
|
MathExtra::q_to_exyz(quatatom,exone,eyone,ezone);
|
|
MathExtra::omega_to_angmom(omega[ibody],exone,eyone,ezone,
|
|
inertiaatom,angmom_one[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|