314 lines
9.2 KiB
C++
314 lines
9.2 KiB
C++
/* fortran/dgecon.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief \b DGECON */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DGECON + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgecon.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgecon.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgecon.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK, */
|
|
/* INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* CHARACTER NORM */
|
|
/* INTEGER INFO, LDA, N */
|
|
/* DOUBLE PRECISION ANORM, RCOND */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* INTEGER IWORK( * ) */
|
|
/* DOUBLE PRECISION A( LDA, * ), WORK( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DGECON estimates the reciprocal of the condition number of a general */
|
|
/* > real matrix A, in either the 1-norm or the infinity-norm, using */
|
|
/* > the LU factorization computed by DGETRF. */
|
|
/* > */
|
|
/* > An estimate is obtained for norm(inv(A)), and the reciprocal of the */
|
|
/* > condition number is computed as */
|
|
/* > RCOND = 1 / ( norm(A) * norm(inv(A)) ). */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] NORM */
|
|
/* > \verbatim */
|
|
/* > NORM is CHARACTER*1 */
|
|
/* > Specifies whether the 1-norm condition number or the */
|
|
/* > infinity-norm condition number is required: */
|
|
/* > = '1' or 'O': 1-norm; */
|
|
/* > = 'I': Infinity-norm. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] A */
|
|
/* > \verbatim */
|
|
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
|
|
/* > The factors L and U from the factorization A = P*L*U */
|
|
/* > as computed by DGETRF. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= max(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ANORM */
|
|
/* > \verbatim */
|
|
/* > ANORM is DOUBLE PRECISION */
|
|
/* > If NORM = '1' or 'O', the 1-norm of the original matrix A. */
|
|
/* > If NORM = 'I', the infinity-norm of the original matrix A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RCOND */
|
|
/* > \verbatim */
|
|
/* > RCOND is DOUBLE PRECISION */
|
|
/* > The reciprocal of the condition number of the matrix A, */
|
|
/* > computed as RCOND = 1/(norm(A) * norm(inv(A))). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is DOUBLE PRECISION array, dimension (4*N) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IWORK */
|
|
/* > \verbatim */
|
|
/* > IWORK is INTEGER array, dimension (N) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup doubleGEcomputational */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int dgecon_(char *norm, integer *n, doublereal *a, integer *
|
|
lda, doublereal *anorm, doublereal *rcond, doublereal *work, integer *
|
|
iwork, integer *info, ftnlen norm_len)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1;
|
|
doublereal d__1;
|
|
|
|
/* Local variables */
|
|
doublereal sl;
|
|
integer ix;
|
|
doublereal su;
|
|
integer kase, kase1;
|
|
doublereal scale;
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
integer isave[3];
|
|
extern /* Subroutine */ int drscl_(integer *, doublereal *, doublereal *,
|
|
integer *), dlacn2_(integer *, doublereal *, doublereal *,
|
|
integer *, doublereal *, integer *, integer *);
|
|
extern doublereal dlamch_(char *, ftnlen);
|
|
extern integer idamax_(integer *, doublereal *, integer *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
doublereal ainvnm;
|
|
extern /* Subroutine */ int dlatrs_(char *, char *, char *, char *,
|
|
integer *, doublereal *, integer *, doublereal *, doublereal *,
|
|
doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen);
|
|
logical onenrm;
|
|
char normin[1];
|
|
doublereal smlnum;
|
|
|
|
|
|
/* -- LAPACK computational routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. Local Arrays .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--work;
|
|
--iwork;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
onenrm = *(unsigned char *)norm == '1' || lsame_(norm, (char *)"O", (ftnlen)1, (
|
|
ftnlen)1);
|
|
if (! onenrm && ! lsame_(norm, (char *)"I", (ftnlen)1, (ftnlen)1)) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -4;
|
|
} else if (*anorm < 0.) {
|
|
*info = -5;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"DGECON", &i__1, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
*rcond = 0.;
|
|
if (*n == 0) {
|
|
*rcond = 1.;
|
|
return 0;
|
|
} else if (*anorm == 0.) {
|
|
return 0;
|
|
}
|
|
|
|
smlnum = dlamch_((char *)"Safe minimum", (ftnlen)12);
|
|
|
|
/* Estimate the norm of inv(A). */
|
|
|
|
ainvnm = 0.;
|
|
*(unsigned char *)normin = 'N';
|
|
if (onenrm) {
|
|
kase1 = 1;
|
|
} else {
|
|
kase1 = 2;
|
|
}
|
|
kase = 0;
|
|
L10:
|
|
dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);
|
|
if (kase != 0) {
|
|
if (kase == kase1) {
|
|
|
|
/* Multiply by inv(L). */
|
|
|
|
dlatrs_((char *)"Lower", (char *)"No transpose", (char *)"Unit", normin, n, &a[a_offset],
|
|
lda, &work[1], &sl, &work[(*n << 1) + 1], info, (ftnlen)5,
|
|
(ftnlen)12, (ftnlen)4, (ftnlen)1);
|
|
|
|
/* Multiply by inv(U). */
|
|
|
|
dlatrs_((char *)"Upper", (char *)"No transpose", (char *)"Non-unit", normin, n, &a[
|
|
a_offset], lda, &work[1], &su, &work[*n * 3 + 1], info, (
|
|
ftnlen)5, (ftnlen)12, (ftnlen)8, (ftnlen)1);
|
|
} else {
|
|
|
|
/* Multiply by inv(U**T). */
|
|
|
|
dlatrs_((char *)"Upper", (char *)"Transpose", (char *)"Non-unit", normin, n, &a[a_offset],
|
|
lda, &work[1], &su, &work[*n * 3 + 1], info, (ftnlen)5, (
|
|
ftnlen)9, (ftnlen)8, (ftnlen)1);
|
|
|
|
/* Multiply by inv(L**T). */
|
|
|
|
dlatrs_((char *)"Lower", (char *)"Transpose", (char *)"Unit", normin, n, &a[a_offset],
|
|
lda, &work[1], &sl, &work[(*n << 1) + 1], info, (ftnlen)5,
|
|
(ftnlen)9, (ftnlen)4, (ftnlen)1);
|
|
}
|
|
|
|
/* Divide X by 1/(SL*SU) if doing so will not cause overflow. */
|
|
|
|
scale = sl * su;
|
|
*(unsigned char *)normin = 'Y';
|
|
if (scale != 1.) {
|
|
ix = idamax_(n, &work[1], &c__1);
|
|
if (scale < (d__1 = work[ix], abs(d__1)) * smlnum || scale == 0.)
|
|
{
|
|
goto L20;
|
|
}
|
|
drscl_(n, &scale, &work[1], &c__1);
|
|
}
|
|
goto L10;
|
|
}
|
|
|
|
/* Compute the estimate of the reciprocal condition number. */
|
|
|
|
if (ainvnm != 0.) {
|
|
*rcond = 1. / ainvnm / *anorm;
|
|
}
|
|
|
|
L20:
|
|
return 0;
|
|
|
|
/* End of DGECON */
|
|
|
|
} /* dgecon_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|