Files
lammps/lib/linalg/dgelss.cpp
Axel Kohlmeyer 1e8b2ad5a0 whitespace fixes
2022-12-28 13:48:43 -05:00

989 lines
37 KiB
C++

/* fortran/dgelss.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static integer c__6 = 6;
static integer c_n1 = -1;
static integer c__0 = 0;
static doublereal c_b46 = 0.;
static integer c__1 = 1;
static doublereal c_b79 = 1.;
/* > \brief <b> DGELSS solves overdetermined or underdetermined systems for GE matrices</b> */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DGELSS + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelss.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelss.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelss.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, */
/* WORK, LWORK, INFO ) */
/* .. Scalar Arguments .. */
/* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
/* DOUBLE PRECISION RCOND */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DGELSS computes the minimum norm solution to a real linear least */
/* > squares problem: */
/* > */
/* > Minimize 2-norm(| b - A*x |). */
/* > */
/* > using the singular value decomposition (SVD) of A. A is an M-by-N */
/* > matrix which may be rank-deficient. */
/* > */
/* > Several right hand side vectors b and solution vectors x can be */
/* > handled in a single call; they are stored as the columns of the */
/* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix */
/* > X. */
/* > */
/* > The effective rank of A is determined by treating as zero those */
/* > singular values which are less than RCOND times the largest singular */
/* > value. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of columns */
/* > of the matrices B and X. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, the first min(m,n) rows of A are overwritten with */
/* > its right singular vectors, stored rowwise. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
/* > On entry, the M-by-NRHS right hand side matrix B. */
/* > On exit, B is overwritten by the N-by-NRHS solution */
/* > matrix X. If m >= n and RANK = n, the residual */
/* > sum-of-squares for the solution in the i-th column is given */
/* > by the sum of squares of elements n+1:m in that column. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= max(1,max(M,N)). */
/* > \endverbatim */
/* > */
/* > \param[out] S */
/* > \verbatim */
/* > S is DOUBLE PRECISION array, dimension (min(M,N)) */
/* > The singular values of A in decreasing order. */
/* > The condition number of A in the 2-norm = S(1)/S(min(m,n)). */
/* > \endverbatim */
/* > */
/* > \param[in] RCOND */
/* > \verbatim */
/* > RCOND is DOUBLE PRECISION */
/* > RCOND is used to determine the effective rank of A. */
/* > Singular values S(i) <= RCOND*S(1) are treated as zero. */
/* > If RCOND < 0, machine precision is used instead. */
/* > \endverbatim */
/* > */
/* > \param[out] RANK */
/* > \verbatim */
/* > RANK is INTEGER */
/* > The effective rank of A, i.e., the number of singular values */
/* > which are greater than RCOND*S(1). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. LWORK >= 1, and also: */
/* > LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS ) */
/* > For good performance, LWORK should generally be larger. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > > 0: the algorithm for computing the SVD failed to converge; */
/* > if INFO = i, i off-diagonal elements of an intermediate */
/* > bidiagonal form did not converge to zero. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doubleGEsolve */
/* ===================================================================== */
/* Subroutine */ int dgelss_(integer *m, integer *n, integer *nrhs,
doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
s, doublereal *rcond, integer *rank, doublereal *work, integer *lwork,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
doublereal d__1;
/* Local variables */
integer i__, bl, ie, il, mm;
doublereal dum[1], eps, thr, anrm, bnrm;
integer itau, lwork_dgebrd__, lwork_dgelqf__, lwork_dgeqrf__,
lwork_dorgbr__, lwork_dormbr__, lwork_dormlq__, lwork_dormqr__;
extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
integer *, doublereal *, doublereal *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, ftnlen, ftnlen);
integer iascl, ibscl;
extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *, ftnlen), drscl_(integer *,
doublereal *, doublereal *, integer *);
integer chunk;
doublereal sfmin;
integer minmn;
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *);
integer maxmn, itaup, itauq, mnthr, iwork;
extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dgebrd_(
integer *, integer *, doublereal *, integer *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *, integer *,
integer *);
extern doublereal dlamch_(char *, ftnlen), dlange_(char *, integer *,
integer *, doublereal *, integer *, doublereal *, ftnlen);
integer bdspac;
extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, integer *),
dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
integer *, integer *, doublereal *, integer *, integer *, ftnlen),
dgeqrf_(integer *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *, integer *), dlacpy_(char *,
integer *, integer *, doublereal *, integer *, doublereal *,
integer *, ftnlen), dlaset_(char *, integer *, integer *,
doublereal *, doublereal *, doublereal *, integer *, ftnlen),
xerbla_(char *, integer *, ftnlen), dbdsqr_(char *, integer *,
integer *, integer *, integer *, doublereal *, doublereal *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, integer *, ftnlen), dorgbr_(char *,
integer *, integer *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *, integer *, ftnlen);
doublereal bignum;
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int dormbr_(char *, char *, char *, integer *,
integer *, integer *, doublereal *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, integer *,
ftnlen, ftnlen, ftnlen), dormlq_(char *, char *, integer *,
integer *, integer *, doublereal *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, integer *,
ftnlen, ftnlen);
integer ldwork;
extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *, integer *, ftnlen, ftnlen);
integer minwrk, maxwrk;
doublereal smlnum;
logical lquery;
/* -- LAPACK driver routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
--s;
--work;
/* Function Body */
*info = 0;
minmn = min(*m,*n);
maxmn = max(*m,*n);
lquery = *lwork == -1;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*lda < max(1,*m)) {
*info = -5;
} else if (*ldb < max(1,maxmn)) {
*info = -7;
}
/* Compute workspace */
/* (Note: Comments in the code beginning (char *)"Workspace:" describe the */
/* minimal amount of workspace needed at that point in the code, */
/* as well as the preferred amount for good performance. */
/* NB refers to the optimal block size for the immediately */
/* following subroutine, as returned by ILAENV.) */
if (*info == 0) {
minwrk = 1;
maxwrk = 1;
if (minmn > 0) {
mm = *m;
mnthr = ilaenv_(&c__6, (char *)"DGELSS", (char *)" ", m, n, nrhs, &c_n1, (ftnlen)
6, (ftnlen)1);
if (*m >= *n && *m >= mnthr) {
/* Path 1a - overdetermined, with many more rows than */
/* columns */
/* Compute space needed for DGEQRF */
dgeqrf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
lwork_dgeqrf__ = (integer) dum[0];
/* Compute space needed for DORMQR */
dormqr_((char *)"L", (char *)"T", m, nrhs, n, &a[a_offset], lda, dum, &b[
b_offset], ldb, dum, &c_n1, info, (ftnlen)1, (ftnlen)
1);
lwork_dormqr__ = (integer) dum[0];
mm = *n;
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + lwork_dgeqrf__;
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + lwork_dormqr__;
maxwrk = max(i__1,i__2);
}
if (*m >= *n) {
/* Path 1 - overdetermined or exactly determined */
/* Compute workspace needed for DBDSQR */
/* Computing MAX */
i__1 = 1, i__2 = *n * 5;
bdspac = max(i__1,i__2);
/* Compute space needed for DGEBRD */
dgebrd_(&mm, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum,
&c_n1, info);
lwork_dgebrd__ = (integer) dum[0];
/* Compute space needed for DORMBR */
dormbr_((char *)"Q", (char *)"L", (char *)"T", &mm, nrhs, n, &a[a_offset], lda, dum, &
b[b_offset], ldb, dum, &c_n1, info, (ftnlen)1, (
ftnlen)1, (ftnlen)1);
lwork_dormbr__ = (integer) dum[0];
/* Compute space needed for DORGBR */
dorgbr_((char *)"P", n, n, n, &a[a_offset], lda, dum, dum, &c_n1,
info, (ftnlen)1);
lwork_dorgbr__ = (integer) dum[0];
/* Compute total workspace needed */
/* Computing MAX */
i__1 = maxwrk, i__2 = *n * 3 + lwork_dgebrd__;
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = *n * 3 + lwork_dormbr__;
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = *n * 3 + lwork_dorgbr__;
maxwrk = max(i__1,i__2);
maxwrk = max(maxwrk,bdspac);
/* Computing MAX */
i__1 = maxwrk, i__2 = *n * *nrhs;
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = *n * 3 + mm, i__2 = *n * 3 + *nrhs, i__1 = max(i__1,
i__2);
minwrk = max(i__1,bdspac);
maxwrk = max(minwrk,maxwrk);
}
if (*n > *m) {
/* Compute workspace needed for DBDSQR */
/* Computing MAX */
i__1 = 1, i__2 = *m * 5;
bdspac = max(i__1,i__2);
/* Computing MAX */
i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *n, i__1 = max(i__1,
i__2);
minwrk = max(i__1,bdspac);
if (*n >= mnthr) {
/* Path 2a - underdetermined, with many more columns */
/* than rows */
/* Compute space needed for DGELQF */
dgelqf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
lwork_dgelqf__ = (integer) dum[0];
/* Compute space needed for DGEBRD */
dgebrd_(m, m, &a[a_offset], lda, &s[1], dum, dum, dum,
dum, &c_n1, info);
lwork_dgebrd__ = (integer) dum[0];
/* Compute space needed for DORMBR */
dormbr_((char *)"Q", (char *)"L", (char *)"T", m, nrhs, n, &a[a_offset], lda, dum,
&b[b_offset], ldb, dum, &c_n1, info, (ftnlen)1, (
ftnlen)1, (ftnlen)1);
lwork_dormbr__ = (integer) dum[0];
/* Compute space needed for DORGBR */
dorgbr_((char *)"P", m, m, m, &a[a_offset], lda, dum, dum, &c_n1,
info, (ftnlen)1);
lwork_dorgbr__ = (integer) dum[0];
/* Compute space needed for DORMLQ */
dormlq_((char *)"L", (char *)"T", n, nrhs, m, &a[a_offset], lda, dum, &b[
b_offset], ldb, dum, &c_n1, info, (ftnlen)1, (
ftnlen)1);
lwork_dormlq__ = (integer) dum[0];
/* Compute total workspace needed */
maxwrk = *m + lwork_dgelqf__;
/* Computing MAX */
i__1 = maxwrk, i__2 = *m * *m + (*m << 2) +
lwork_dgebrd__;
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = *m * *m + (*m << 2) +
lwork_dormbr__;
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = *m * *m + (*m << 2) +
lwork_dorgbr__;
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = *m * *m + *m + bdspac;
maxwrk = max(i__1,i__2);
if (*nrhs > 1) {
/* Computing MAX */
i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
maxwrk = max(i__1,i__2);
} else {
/* Computing MAX */
i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
maxwrk = max(i__1,i__2);
}
/* Computing MAX */
i__1 = maxwrk, i__2 = *m + lwork_dormlq__;
maxwrk = max(i__1,i__2);
} else {
/* Path 2 - underdetermined */
/* Compute space needed for DGEBRD */
dgebrd_(m, n, &a[a_offset], lda, &s[1], dum, dum, dum,
dum, &c_n1, info);
lwork_dgebrd__ = (integer) dum[0];
/* Compute space needed for DORMBR */
dormbr_((char *)"Q", (char *)"L", (char *)"T", m, nrhs, m, &a[a_offset], lda, dum,
&b[b_offset], ldb, dum, &c_n1, info, (ftnlen)1, (
ftnlen)1, (ftnlen)1);
lwork_dormbr__ = (integer) dum[0];
/* Compute space needed for DORGBR */
dorgbr_((char *)"P", m, n, m, &a[a_offset], lda, dum, dum, &c_n1,
info, (ftnlen)1);
lwork_dorgbr__ = (integer) dum[0];
maxwrk = *m * 3 + lwork_dgebrd__;
/* Computing MAX */
i__1 = maxwrk, i__2 = *m * 3 + lwork_dormbr__;
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = *m * 3 + lwork_dorgbr__;
maxwrk = max(i__1,i__2);
maxwrk = max(maxwrk,bdspac);
/* Computing MAX */
i__1 = maxwrk, i__2 = *n * *nrhs;
maxwrk = max(i__1,i__2);
}
}
maxwrk = max(minwrk,maxwrk);
}
work[1] = (doublereal) maxwrk;
if (*lwork < minwrk && ! lquery) {
*info = -12;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DGELSS", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0) {
*rank = 0;
return 0;
}
/* Get machine parameters */
eps = dlamch_((char *)"P", (ftnlen)1);
sfmin = dlamch_((char *)"S", (ftnlen)1);
smlnum = sfmin / eps;
bignum = 1. / smlnum;
dlabad_(&smlnum, &bignum);
/* Scale A if max element outside range [SMLNUM,BIGNUM] */
anrm = dlange_((char *)"M", m, n, &a[a_offset], lda, &work[1], (ftnlen)1);
iascl = 0;
if (anrm > 0. && anrm < smlnum) {
/* Scale matrix norm up to SMLNUM */
dlascl_((char *)"G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
info, (ftnlen)1);
iascl = 1;
} else if (anrm > bignum) {
/* Scale matrix norm down to BIGNUM */
dlascl_((char *)"G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
info, (ftnlen)1);
iascl = 2;
} else if (anrm == 0.) {
/* Matrix all zero. Return zero solution. */
i__1 = max(*m,*n);
dlaset_((char *)"F", &i__1, nrhs, &c_b46, &c_b46, &b[b_offset], ldb, (ftnlen)
1);
dlaset_((char *)"F", &minmn, &c__1, &c_b46, &c_b46, &s[1], &minmn, (ftnlen)1);
*rank = 0;
goto L70;
}
/* Scale B if max element outside range [SMLNUM,BIGNUM] */
bnrm = dlange_((char *)"M", m, nrhs, &b[b_offset], ldb, &work[1], (ftnlen)1);
ibscl = 0;
if (bnrm > 0. && bnrm < smlnum) {
/* Scale matrix norm up to SMLNUM */
dlascl_((char *)"G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
info, (ftnlen)1);
ibscl = 1;
} else if (bnrm > bignum) {
/* Scale matrix norm down to BIGNUM */
dlascl_((char *)"G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
info, (ftnlen)1);
ibscl = 2;
}
/* Overdetermined case */
if (*m >= *n) {
/* Path 1 - overdetermined or exactly determined */
mm = *m;
if (*m >= mnthr) {
/* Path 1a - overdetermined, with many more rows than columns */
mm = *n;
itau = 1;
iwork = itau + *n;
/* Compute A=Q*R */
/* (Workspace: need 2*N, prefer N+N*NB) */
i__1 = *lwork - iwork + 1;
dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__1,
info);
/* Multiply B by transpose(Q) */
/* (Workspace: need N+NRHS, prefer N+NRHS*NB) */
i__1 = *lwork - iwork + 1;
dormqr_((char *)"L", (char *)"T", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
b_offset], ldb, &work[iwork], &i__1, info, (ftnlen)1, (
ftnlen)1);
/* Zero out below R */
if (*n > 1) {
i__1 = *n - 1;
i__2 = *n - 1;
dlaset_((char *)"L", &i__1, &i__2, &c_b46, &c_b46, &a[a_dim1 + 2],
lda, (ftnlen)1);
}
}
ie = 1;
itauq = ie + *n;
itaup = itauq + *n;
iwork = itaup + *n;
/* Bidiagonalize R in A */
/* (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) */
i__1 = *lwork - iwork + 1;
dgebrd_(&mm, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
work[itaup], &work[iwork], &i__1, info);
/* Multiply B by transpose of left bidiagonalizing vectors of R */
/* (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) */
i__1 = *lwork - iwork + 1;
dormbr_((char *)"Q", (char *)"L", (char *)"T", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
&b[b_offset], ldb, &work[iwork], &i__1, info, (ftnlen)1, (
ftnlen)1, (ftnlen)1);
/* Generate right bidiagonalizing vectors of R in A */
/* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) */
i__1 = *lwork - iwork + 1;
dorgbr_((char *)"P", n, n, n, &a[a_offset], lda, &work[itaup], &work[iwork], &
i__1, info, (ftnlen)1);
iwork = ie + *n;
/* Perform bidiagonal QR iteration */
/* multiply B by transpose of left singular vectors */
/* compute right singular vectors in A */
/* (Workspace: need BDSPAC) */
dbdsqr_((char *)"U", n, n, &c__0, nrhs, &s[1], &work[ie], &a[a_offset], lda,
dum, &c__1, &b[b_offset], ldb, &work[iwork], info, (ftnlen)1);
if (*info != 0) {
goto L70;
}
/* Multiply B by reciprocals of singular values */
/* Computing MAX */
d__1 = *rcond * s[1];
thr = max(d__1,sfmin);
if (*rcond < 0.) {
/* Computing MAX */
d__1 = eps * s[1];
thr = max(d__1,sfmin);
}
*rank = 0;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (s[i__] > thr) {
drscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
++(*rank);
} else {
dlaset_((char *)"F", &c__1, nrhs, &c_b46, &c_b46, &b[i__ + b_dim1],
ldb, (ftnlen)1);
}
/* L10: */
}
/* Multiply B by right singular vectors */
/* (Workspace: need N, prefer N*NRHS) */
if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
dgemm_((char *)"T", (char *)"N", n, nrhs, n, &c_b79, &a[a_offset], lda, &b[
b_offset], ldb, &c_b46, &work[1], ldb, (ftnlen)1, (ftnlen)
1);
dlacpy_((char *)"G", n, nrhs, &work[1], ldb, &b[b_offset], ldb, (ftnlen)1)
;
} else if (*nrhs > 1) {
chunk = *lwork / *n;
i__1 = *nrhs;
i__2 = chunk;
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
i__3 = *nrhs - i__ + 1;
bl = min(i__3,chunk);
dgemm_((char *)"T", (char *)"N", n, &bl, n, &c_b79, &a[a_offset], lda, &b[i__
* b_dim1 + 1], ldb, &c_b46, &work[1], n, (ftnlen)1, (
ftnlen)1);
dlacpy_((char *)"G", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1], ldb, (
ftnlen)1);
/* L20: */
}
} else {
dgemv_((char *)"T", n, n, &c_b79, &a[a_offset], lda, &b[b_offset], &c__1,
&c_b46, &work[1], &c__1, (ftnlen)1);
dcopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
}
} else /* if(complicated condition) */ {
/* Computing MAX */
i__2 = *m, i__1 = (*m << 1) - 4, i__2 = max(i__2,i__1), i__2 = max(
i__2,*nrhs), i__1 = *n - *m * 3;
if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__2,i__1)) {
/* Path 2a - underdetermined, with many more columns than rows */
/* and sufficient workspace for an efficient algorithm */
ldwork = *m;
/* Computing MAX */
/* Computing MAX */
i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 =
max(i__3,*nrhs), i__4 = *n - *m * 3;
i__2 = (*m << 2) + *m * *lda + max(i__3,i__4), i__1 = *m * *lda +
*m + *m * *nrhs;
if (*lwork >= max(i__2,i__1)) {
ldwork = *lda;
}
itau = 1;
iwork = *m + 1;
/* Compute A=L*Q */
/* (Workspace: need 2*M, prefer M+M*NB) */
i__2 = *lwork - iwork + 1;
dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__2,
info);
il = iwork;
/* Copy L to WORK(IL), zeroing out above it */
dlacpy_((char *)"L", m, m, &a[a_offset], lda, &work[il], &ldwork, (ftnlen)
1);
i__2 = *m - 1;
i__1 = *m - 1;
dlaset_((char *)"U", &i__2, &i__1, &c_b46, &c_b46, &work[il + ldwork], &
ldwork, (ftnlen)1);
ie = il + ldwork * *m;
itauq = ie + *m;
itaup = itauq + *m;
iwork = itaup + *m;
/* Bidiagonalize L in WORK(IL) */
/* (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) */
i__2 = *lwork - iwork + 1;
dgebrd_(m, m, &work[il], &ldwork, &s[1], &work[ie], &work[itauq],
&work[itaup], &work[iwork], &i__2, info);
/* Multiply B by transpose of left bidiagonalizing vectors of L */
/* (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
i__2 = *lwork - iwork + 1;
dormbr_((char *)"Q", (char *)"L", (char *)"T", m, nrhs, m, &work[il], &ldwork, &work[
itauq], &b[b_offset], ldb, &work[iwork], &i__2, info, (
ftnlen)1, (ftnlen)1, (ftnlen)1);
/* Generate right bidiagonalizing vectors of R in WORK(IL) */
/* (Workspace: need M*M+5*M-1, prefer M*M+4*M+(M-1)*NB) */
i__2 = *lwork - iwork + 1;
dorgbr_((char *)"P", m, m, m, &work[il], &ldwork, &work[itaup], &work[
iwork], &i__2, info, (ftnlen)1);
iwork = ie + *m;
/* Perform bidiagonal QR iteration, */
/* computing right singular vectors of L in WORK(IL) and */
/* multiplying B by transpose of left singular vectors */
/* (Workspace: need M*M+M+BDSPAC) */
dbdsqr_((char *)"U", m, m, &c__0, nrhs, &s[1], &work[ie], &work[il], &
ldwork, &a[a_offset], lda, &b[b_offset], ldb, &work[iwork]
, info, (ftnlen)1);
if (*info != 0) {
goto L70;
}
/* Multiply B by reciprocals of singular values */
/* Computing MAX */
d__1 = *rcond * s[1];
thr = max(d__1,sfmin);
if (*rcond < 0.) {
/* Computing MAX */
d__1 = eps * s[1];
thr = max(d__1,sfmin);
}
*rank = 0;
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
if (s[i__] > thr) {
drscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
++(*rank);
} else {
dlaset_((char *)"F", &c__1, nrhs, &c_b46, &c_b46, &b[i__ + b_dim1]
, ldb, (ftnlen)1);
}
/* L30: */
}
iwork = ie;
/* Multiply B by right singular vectors of L in WORK(IL) */
/* (Workspace: need M*M+2*M, prefer M*M+M+M*NRHS) */
if (*lwork >= *ldb * *nrhs + iwork - 1 && *nrhs > 1) {
dgemm_((char *)"T", (char *)"N", m, nrhs, m, &c_b79, &work[il], &ldwork, &b[
b_offset], ldb, &c_b46, &work[iwork], ldb, (ftnlen)1,
(ftnlen)1);
dlacpy_((char *)"G", m, nrhs, &work[iwork], ldb, &b[b_offset], ldb, (
ftnlen)1);
} else if (*nrhs > 1) {
chunk = (*lwork - iwork + 1) / *m;
i__2 = *nrhs;
i__1 = chunk;
for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
i__1) {
/* Computing MIN */
i__3 = *nrhs - i__ + 1;
bl = min(i__3,chunk);
dgemm_((char *)"T", (char *)"N", m, &bl, m, &c_b79, &work[il], &ldwork, &
b[i__ * b_dim1 + 1], ldb, &c_b46, &work[iwork], m,
(ftnlen)1, (ftnlen)1);
dlacpy_((char *)"G", m, &bl, &work[iwork], m, &b[i__ * b_dim1 + 1]
, ldb, (ftnlen)1);
/* L40: */
}
} else {
dgemv_((char *)"T", m, m, &c_b79, &work[il], &ldwork, &b[b_dim1 + 1],
&c__1, &c_b46, &work[iwork], &c__1, (ftnlen)1);
dcopy_(m, &work[iwork], &c__1, &b[b_dim1 + 1], &c__1);
}
/* Zero out below first M rows of B */
i__1 = *n - *m;
dlaset_((char *)"F", &i__1, nrhs, &c_b46, &c_b46, &b[*m + 1 + b_dim1],
ldb, (ftnlen)1);
iwork = itau + *m;
/* Multiply transpose(Q) by B */
/* (Workspace: need M+NRHS, prefer M+NRHS*NB) */
i__1 = *lwork - iwork + 1;
dormlq_((char *)"L", (char *)"T", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
b_offset], ldb, &work[iwork], &i__1, info, (ftnlen)1, (
ftnlen)1);
} else {
/* Path 2 - remaining underdetermined cases */
ie = 1;
itauq = ie + *m;
itaup = itauq + *m;
iwork = itaup + *m;
/* Bidiagonalize A */
/* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */
i__1 = *lwork - iwork + 1;
dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
work[itaup], &work[iwork], &i__1, info);
/* Multiply B by transpose of left bidiagonalizing vectors */
/* (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) */
i__1 = *lwork - iwork + 1;
dormbr_((char *)"Q", (char *)"L", (char *)"T", m, nrhs, n, &a[a_offset], lda, &work[itauq]
, &b[b_offset], ldb, &work[iwork], &i__1, info, (ftnlen)1,
(ftnlen)1, (ftnlen)1);
/* Generate right bidiagonalizing vectors in A */
/* (Workspace: need 4*M, prefer 3*M+M*NB) */
i__1 = *lwork - iwork + 1;
dorgbr_((char *)"P", m, n, m, &a[a_offset], lda, &work[itaup], &work[
iwork], &i__1, info, (ftnlen)1);
iwork = ie + *m;
/* Perform bidiagonal QR iteration, */
/* computing right singular vectors of A in A and */
/* multiplying B by transpose of left singular vectors */
/* (Workspace: need BDSPAC) */
dbdsqr_((char *)"L", m, n, &c__0, nrhs, &s[1], &work[ie], &a[a_offset],
lda, dum, &c__1, &b[b_offset], ldb, &work[iwork], info, (
ftnlen)1);
if (*info != 0) {
goto L70;
}
/* Multiply B by reciprocals of singular values */
/* Computing MAX */
d__1 = *rcond * s[1];
thr = max(d__1,sfmin);
if (*rcond < 0.) {
/* Computing MAX */
d__1 = eps * s[1];
thr = max(d__1,sfmin);
}
*rank = 0;
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
if (s[i__] > thr) {
drscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
++(*rank);
} else {
dlaset_((char *)"F", &c__1, nrhs, &c_b46, &c_b46, &b[i__ + b_dim1]
, ldb, (ftnlen)1);
}
/* L50: */
}
/* Multiply B by right singular vectors of A */
/* (Workspace: need N, prefer N*NRHS) */
if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
dgemm_((char *)"T", (char *)"N", n, nrhs, m, &c_b79, &a[a_offset], lda, &b[
b_offset], ldb, &c_b46, &work[1], ldb, (ftnlen)1, (
ftnlen)1);
dlacpy_((char *)"F", n, nrhs, &work[1], ldb, &b[b_offset], ldb, (
ftnlen)1);
} else if (*nrhs > 1) {
chunk = *lwork / *n;
i__1 = *nrhs;
i__2 = chunk;
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
i__2) {
/* Computing MIN */
i__3 = *nrhs - i__ + 1;
bl = min(i__3,chunk);
dgemm_((char *)"T", (char *)"N", n, &bl, m, &c_b79, &a[a_offset], lda, &b[
i__ * b_dim1 + 1], ldb, &c_b46, &work[1], n, (
ftnlen)1, (ftnlen)1);
dlacpy_((char *)"F", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1],
ldb, (ftnlen)1);
/* L60: */
}
} else {
dgemv_((char *)"T", m, n, &c_b79, &a[a_offset], lda, &b[b_offset], &
c__1, &c_b46, &work[1], &c__1, (ftnlen)1);
dcopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
}
}
}
/* Undo scaling */
if (iascl == 1) {
dlascl_((char *)"G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
info, (ftnlen)1);
dlascl_((char *)"G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
minmn, info, (ftnlen)1);
} else if (iascl == 2) {
dlascl_((char *)"G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
info, (ftnlen)1);
dlascl_((char *)"G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
minmn, info, (ftnlen)1);
}
if (ibscl == 1) {
dlascl_((char *)"G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
info, (ftnlen)1);
} else if (ibscl == 2) {
dlascl_((char *)"G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
info, (ftnlen)1);
}
L70:
work[1] = (doublereal) maxwrk;
return 0;
/* End of DGELSS */
} /* dgelss_ */
#ifdef __cplusplus
}
#endif