459 lines
14 KiB
C++
459 lines
14 KiB
C++
/* fortran/dgemm.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* > \brief \b DGEMM */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* DOUBLE PRECISION ALPHA,BETA */
|
|
/* INTEGER K,LDA,LDB,LDC,M,N */
|
|
/* CHARACTER TRANSA,TRANSB */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DGEMM performs one of the matrix-matrix operations */
|
|
/* > */
|
|
/* > C := alpha*op( A )*op( B ) + beta*C, */
|
|
/* > */
|
|
/* > where op( X ) is one of */
|
|
/* > */
|
|
/* > op( X ) = X or op( X ) = X**T, */
|
|
/* > */
|
|
/* > alpha and beta are scalars, and A, B and C are matrices, with op( A ) */
|
|
/* > an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] TRANSA */
|
|
/* > \verbatim */
|
|
/* > TRANSA is CHARACTER*1 */
|
|
/* > On entry, TRANSA specifies the form of op( A ) to be used in */
|
|
/* > the matrix multiplication as follows: */
|
|
/* > */
|
|
/* > TRANSA = 'N' or 'n', op( A ) = A. */
|
|
/* > */
|
|
/* > TRANSA = 'T' or 't', op( A ) = A**T. */
|
|
/* > */
|
|
/* > TRANSA = 'C' or 'c', op( A ) = A**T. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] TRANSB */
|
|
/* > \verbatim */
|
|
/* > TRANSB is CHARACTER*1 */
|
|
/* > On entry, TRANSB specifies the form of op( B ) to be used in */
|
|
/* > the matrix multiplication as follows: */
|
|
/* > */
|
|
/* > TRANSB = 'N' or 'n', op( B ) = B. */
|
|
/* > */
|
|
/* > TRANSB = 'T' or 't', op( B ) = B**T. */
|
|
/* > */
|
|
/* > TRANSB = 'C' or 'c', op( B ) = B**T. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > On entry, M specifies the number of rows of the matrix */
|
|
/* > op( A ) and of the matrix C. M must be at least zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > On entry, N specifies the number of columns of the matrix */
|
|
/* > op( B ) and the number of columns of the matrix C. N must be */
|
|
/* > at least zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] K */
|
|
/* > \verbatim */
|
|
/* > K is INTEGER */
|
|
/* > On entry, K specifies the number of columns of the matrix */
|
|
/* > op( A ) and the number of rows of the matrix op( B ). K must */
|
|
/* > be at least zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ALPHA */
|
|
/* > \verbatim */
|
|
/* > ALPHA is DOUBLE PRECISION. */
|
|
/* > On entry, ALPHA specifies the scalar alpha. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] A */
|
|
/* > \verbatim */
|
|
/* > A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is */
|
|
/* > k when TRANSA = 'N' or 'n', and is m otherwise. */
|
|
/* > Before entry with TRANSA = 'N' or 'n', the leading m by k */
|
|
/* > part of the array A must contain the matrix A, otherwise */
|
|
/* > the leading k by m part of the array A must contain the */
|
|
/* > matrix A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > On entry, LDA specifies the first dimension of A as declared */
|
|
/* > in the calling (sub) program. When TRANSA = 'N' or 'n' then */
|
|
/* > LDA must be at least max( 1, m ), otherwise LDA must be at */
|
|
/* > least max( 1, k ). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] B */
|
|
/* > \verbatim */
|
|
/* > B is DOUBLE PRECISION array, dimension ( LDB, kb ), where kb is */
|
|
/* > n when TRANSB = 'N' or 'n', and is k otherwise. */
|
|
/* > Before entry with TRANSB = 'N' or 'n', the leading k by n */
|
|
/* > part of the array B must contain the matrix B, otherwise */
|
|
/* > the leading n by k part of the array B must contain the */
|
|
/* > matrix B. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDB */
|
|
/* > \verbatim */
|
|
/* > LDB is INTEGER */
|
|
/* > On entry, LDB specifies the first dimension of B as declared */
|
|
/* > in the calling (sub) program. When TRANSB = 'N' or 'n' then */
|
|
/* > LDB must be at least max( 1, k ), otherwise LDB must be at */
|
|
/* > least max( 1, n ). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] BETA */
|
|
/* > \verbatim */
|
|
/* > BETA is DOUBLE PRECISION. */
|
|
/* > On entry, BETA specifies the scalar beta. When BETA is */
|
|
/* > supplied as zero then C need not be set on input. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] C */
|
|
/* > \verbatim */
|
|
/* > C is DOUBLE PRECISION array, dimension ( LDC, N ) */
|
|
/* > Before entry, the leading m by n part of the array C must */
|
|
/* > contain the matrix C, except when beta is zero, in which */
|
|
/* > case C need not be set on entry. */
|
|
/* > On exit, the array C is overwritten by the m by n matrix */
|
|
/* > ( alpha*op( A )*op( B ) + beta*C ). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDC */
|
|
/* > \verbatim */
|
|
/* > LDC is INTEGER */
|
|
/* > On entry, LDC specifies the first dimension of C as declared */
|
|
/* > in the calling (sub) program. LDC must be at least */
|
|
/* > max( 1, m ). */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup double_blas_level3 */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > Level 3 Blas routine. */
|
|
/* > */
|
|
/* > -- Written on 8-February-1989. */
|
|
/* > Jack Dongarra, Argonne National Laboratory. */
|
|
/* > Iain Duff, AERE Harwell. */
|
|
/* > Jeremy Du Croz, Numerical Algorithms Group Ltd. */
|
|
/* > Sven Hammarling, Numerical Algorithms Group Ltd. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int dgemm_(char *transa, char *transb, integer *m, integer *
|
|
n, integer *k, doublereal *alpha, doublereal *a, integer *lda,
|
|
doublereal *b, integer *ldb, doublereal *beta, doublereal *c__,
|
|
integer *ldc, ftnlen transa_len, ftnlen transb_len)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
|
|
i__3;
|
|
|
|
/* Local variables */
|
|
integer i__, j, l, info;
|
|
logical nota, notb;
|
|
doublereal temp;
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
integer nrowa, nrowb;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
|
|
|
|
/* -- Reference BLAS level3 routine -- */
|
|
/* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
|
|
/* Set NOTA and NOTB as true if A and B respectively are not */
|
|
/* transposed and set NROWA and NROWB as the number of rows of A */
|
|
/* and B respectively. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1;
|
|
b -= b_offset;
|
|
c_dim1 = *ldc;
|
|
c_offset = 1 + c_dim1;
|
|
c__ -= c_offset;
|
|
|
|
/* Function Body */
|
|
nota = lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1);
|
|
notb = lsame_(transb, (char *)"N", (ftnlen)1, (ftnlen)1);
|
|
if (nota) {
|
|
nrowa = *m;
|
|
} else {
|
|
nrowa = *k;
|
|
}
|
|
if (notb) {
|
|
nrowb = *k;
|
|
} else {
|
|
nrowb = *n;
|
|
}
|
|
|
|
/* Test the input parameters. */
|
|
|
|
info = 0;
|
|
if (! nota && ! lsame_(transa, (char *)"C", (ftnlen)1, (ftnlen)1) && ! lsame_(
|
|
transa, (char *)"T", (ftnlen)1, (ftnlen)1)) {
|
|
info = 1;
|
|
} else if (! notb && ! lsame_(transb, (char *)"C", (ftnlen)1, (ftnlen)1) && !
|
|
lsame_(transb, (char *)"T", (ftnlen)1, (ftnlen)1)) {
|
|
info = 2;
|
|
} else if (*m < 0) {
|
|
info = 3;
|
|
} else if (*n < 0) {
|
|
info = 4;
|
|
} else if (*k < 0) {
|
|
info = 5;
|
|
} else if (*lda < max(1,nrowa)) {
|
|
info = 8;
|
|
} else if (*ldb < max(1,nrowb)) {
|
|
info = 10;
|
|
} else if (*ldc < max(1,*m)) {
|
|
info = 13;
|
|
}
|
|
if (info != 0) {
|
|
xerbla_((char *)"DGEMM ", &info, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible. */
|
|
|
|
if (*m == 0 || *n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) {
|
|
return 0;
|
|
}
|
|
|
|
/* And if alpha.eq.zero. */
|
|
|
|
if (*alpha == 0.) {
|
|
if (*beta == 0.) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
c__[i__ + j * c_dim1] = 0.;
|
|
/* L10: */
|
|
}
|
|
/* L20: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
|
|
/* L30: */
|
|
}
|
|
/* L40: */
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Start the operations. */
|
|
|
|
if (notb) {
|
|
if (nota) {
|
|
|
|
/* Form C := alpha*A*B + beta*C. */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (*beta == 0.) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
c__[i__ + j * c_dim1] = 0.;
|
|
/* L50: */
|
|
}
|
|
} else if (*beta != 1.) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
|
|
/* L60: */
|
|
}
|
|
}
|
|
i__2 = *k;
|
|
for (l = 1; l <= i__2; ++l) {
|
|
temp = *alpha * b[l + j * b_dim1];
|
|
i__3 = *m;
|
|
for (i__ = 1; i__ <= i__3; ++i__) {
|
|
c__[i__ + j * c_dim1] += temp * a[i__ + l * a_dim1];
|
|
/* L70: */
|
|
}
|
|
/* L80: */
|
|
}
|
|
/* L90: */
|
|
}
|
|
} else {
|
|
|
|
/* Form C := alpha*A**T*B + beta*C */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
temp = 0.;
|
|
i__3 = *k;
|
|
for (l = 1; l <= i__3; ++l) {
|
|
temp += a[l + i__ * a_dim1] * b[l + j * b_dim1];
|
|
/* L100: */
|
|
}
|
|
if (*beta == 0.) {
|
|
c__[i__ + j * c_dim1] = *alpha * temp;
|
|
} else {
|
|
c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
|
|
i__ + j * c_dim1];
|
|
}
|
|
/* L110: */
|
|
}
|
|
/* L120: */
|
|
}
|
|
}
|
|
} else {
|
|
if (nota) {
|
|
|
|
/* Form C := alpha*A*B**T + beta*C */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (*beta == 0.) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
c__[i__ + j * c_dim1] = 0.;
|
|
/* L130: */
|
|
}
|
|
} else if (*beta != 1.) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
|
|
/* L140: */
|
|
}
|
|
}
|
|
i__2 = *k;
|
|
for (l = 1; l <= i__2; ++l) {
|
|
temp = *alpha * b[j + l * b_dim1];
|
|
i__3 = *m;
|
|
for (i__ = 1; i__ <= i__3; ++i__) {
|
|
c__[i__ + j * c_dim1] += temp * a[i__ + l * a_dim1];
|
|
/* L150: */
|
|
}
|
|
/* L160: */
|
|
}
|
|
/* L170: */
|
|
}
|
|
} else {
|
|
|
|
/* Form C := alpha*A**T*B**T + beta*C */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
temp = 0.;
|
|
i__3 = *k;
|
|
for (l = 1; l <= i__3; ++l) {
|
|
temp += a[l + i__ * a_dim1] * b[j + l * b_dim1];
|
|
/* L180: */
|
|
}
|
|
if (*beta == 0.) {
|
|
c__[i__ + j * c_dim1] = *alpha * temp;
|
|
} else {
|
|
c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
|
|
i__ + j * c_dim1];
|
|
}
|
|
/* L190: */
|
|
}
|
|
/* L200: */
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of DGEMM */
|
|
|
|
} /* dgemm_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|