337 lines
11 KiB
C++
337 lines
11 KiB
C++
/* fortran/dlaed1.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
|
|
/* > \brief \b DLAED1 used by DSTEDC. Computes the updated eigensystem of a diagonal matrix after modification
|
|
by a rank-one symmetric matrix. Used when the original matrix is tridiagonal. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DLAED1 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed1.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed1.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed1.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK, */
|
|
/* INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* INTEGER CUTPNT, INFO, LDQ, N */
|
|
/* DOUBLE PRECISION RHO */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* INTEGER INDXQ( * ), IWORK( * ) */
|
|
/* DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DLAED1 computes the updated eigensystem of a diagonal */
|
|
/* > matrix after modification by a rank-one symmetric matrix. This */
|
|
/* > routine is used only for the eigenproblem which requires all */
|
|
/* > eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles */
|
|
/* > the case in which eigenvalues only or eigenvalues and eigenvectors */
|
|
/* > of a full symmetric matrix (which was reduced to tridiagonal form) */
|
|
/* > are desired. */
|
|
/* > */
|
|
/* > T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out) */
|
|
/* > */
|
|
/* > where Z = Q**T*u, u is a vector of length N with ones in the */
|
|
/* > CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */
|
|
/* > */
|
|
/* > The eigenvectors of the original matrix are stored in Q, and the */
|
|
/* > eigenvalues are in D. The algorithm consists of three stages: */
|
|
/* > */
|
|
/* > The first stage consists of deflating the size of the problem */
|
|
/* > when there are multiple eigenvalues or if there is a zero in */
|
|
/* > the Z vector. For each such occurrence the dimension of the */
|
|
/* > secular equation problem is reduced by one. This stage is */
|
|
/* > performed by the routine DLAED2. */
|
|
/* > */
|
|
/* > The second stage consists of calculating the updated */
|
|
/* > eigenvalues. This is done by finding the roots of the secular */
|
|
/* > equation via the routine DLAED4 (as called by DLAED3). */
|
|
/* > This routine also calculates the eigenvectors of the current */
|
|
/* > problem. */
|
|
/* > */
|
|
/* > The final stage consists of computing the updated eigenvectors */
|
|
/* > directly using the updated eigenvalues. The eigenvectors for */
|
|
/* > the current problem are multiplied with the eigenvectors from */
|
|
/* > the overall problem. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] D */
|
|
/* > \verbatim */
|
|
/* > D is DOUBLE PRECISION array, dimension (N) */
|
|
/* > On entry, the eigenvalues of the rank-1-perturbed matrix. */
|
|
/* > On exit, the eigenvalues of the repaired matrix. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] Q */
|
|
/* > \verbatim */
|
|
/* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
|
|
/* > On entry, the eigenvectors of the rank-1-perturbed matrix. */
|
|
/* > On exit, the eigenvectors of the repaired tridiagonal matrix. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDQ */
|
|
/* > \verbatim */
|
|
/* > LDQ is INTEGER */
|
|
/* > The leading dimension of the array Q. LDQ >= max(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] INDXQ */
|
|
/* > \verbatim */
|
|
/* > INDXQ is INTEGER array, dimension (N) */
|
|
/* > On entry, the permutation which separately sorts the two */
|
|
/* > subproblems in D into ascending order. */
|
|
/* > On exit, the permutation which will reintegrate the */
|
|
/* > subproblems back into sorted order, */
|
|
/* > i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] RHO */
|
|
/* > \verbatim */
|
|
/* > RHO is DOUBLE PRECISION */
|
|
/* > The subdiagonal entry used to create the rank-1 modification. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] CUTPNT */
|
|
/* > \verbatim */
|
|
/* > CUTPNT is INTEGER */
|
|
/* > The location of the last eigenvalue in the leading sub-matrix. */
|
|
/* > min(1,N) <= CUTPNT <= N/2. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is DOUBLE PRECISION array, dimension (4*N + N**2) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IWORK */
|
|
/* > \verbatim */
|
|
/* > IWORK is INTEGER array, dimension (4*N) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit. */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
/* > > 0: if INFO = 1, an eigenvalue did not converge */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup auxOTHERcomputational */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Jeff Rutter, Computer Science Division, University of California */
|
|
/* > at Berkeley, USA \n */
|
|
/* > Modified by Francoise Tisseur, University of Tennessee */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int dlaed1_(integer *n, doublereal *d__, doublereal *q,
|
|
integer *ldq, integer *indxq, doublereal *rho, integer *cutpnt,
|
|
doublereal *work, integer *iwork, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer q_dim1, q_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer i__, k, n1, n2, is, iw, iz, iq2, zpp1, indx, indxc;
|
|
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
|
|
doublereal *, integer *);
|
|
integer indxp;
|
|
extern /* Subroutine */ int dlaed2_(integer *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *, integer *, doublereal *,
|
|
doublereal *, doublereal *, doublereal *, doublereal *, integer *,
|
|
integer *, integer *, integer *, integer *), dlaed3_(integer *,
|
|
integer *, integer *, doublereal *, doublereal *, integer *,
|
|
doublereal *, doublereal *, doublereal *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *);
|
|
integer idlmda;
|
|
extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *,
|
|
integer *, integer *, integer *), xerbla_(char *, integer *,
|
|
ftnlen);
|
|
integer coltyp;
|
|
|
|
|
|
/* -- LAPACK computational routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--d__;
|
|
q_dim1 = *ldq;
|
|
q_offset = 1 + q_dim1;
|
|
q -= q_offset;
|
|
--indxq;
|
|
--work;
|
|
--iwork;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
if (*n < 0) {
|
|
*info = -1;
|
|
} else if (*ldq < max(1,*n)) {
|
|
*info = -4;
|
|
} else /* if(complicated condition) */ {
|
|
/* Computing MIN */
|
|
i__1 = 1, i__2 = *n / 2;
|
|
if (min(i__1,i__2) > *cutpnt || *n / 2 < *cutpnt) {
|
|
*info = -7;
|
|
}
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"DLAED1", &i__1, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* The following values are integer pointers which indicate */
|
|
/* the portion of the workspace */
|
|
/* used by a particular array in DLAED2 and DLAED3. */
|
|
|
|
iz = 1;
|
|
idlmda = iz + *n;
|
|
iw = idlmda + *n;
|
|
iq2 = iw + *n;
|
|
|
|
indx = 1;
|
|
indxc = indx + *n;
|
|
coltyp = indxc + *n;
|
|
indxp = coltyp + *n;
|
|
|
|
|
|
/* Form the z-vector which consists of the last row of Q_1 and the */
|
|
/* first row of Q_2. */
|
|
|
|
dcopy_(cutpnt, &q[*cutpnt + q_dim1], ldq, &work[iz], &c__1);
|
|
zpp1 = *cutpnt + 1;
|
|
i__1 = *n - *cutpnt;
|
|
dcopy_(&i__1, &q[zpp1 + zpp1 * q_dim1], ldq, &work[iz + *cutpnt], &c__1);
|
|
|
|
/* Deflate eigenvalues. */
|
|
|
|
dlaed2_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, &indxq[1], rho, &work[
|
|
iz], &work[idlmda], &work[iw], &work[iq2], &iwork[indx], &iwork[
|
|
indxc], &iwork[indxp], &iwork[coltyp], info);
|
|
|
|
if (*info != 0) {
|
|
goto L20;
|
|
}
|
|
|
|
/* Solve Secular Equation. */
|
|
|
|
if (k != 0) {
|
|
is = (iwork[coltyp] + iwork[coltyp + 1]) * *cutpnt + (iwork[coltyp +
|
|
1] + iwork[coltyp + 2]) * (*n - *cutpnt) + iq2;
|
|
dlaed3_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, rho, &work[idlmda],
|
|
&work[iq2], &iwork[indxc], &iwork[coltyp], &work[iw], &work[
|
|
is], info);
|
|
if (*info != 0) {
|
|
goto L20;
|
|
}
|
|
|
|
/* Prepare the INDXQ sorting permutation. */
|
|
|
|
n1 = k;
|
|
n2 = *n - k;
|
|
dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
|
|
} else {
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
indxq[i__] = i__;
|
|
/* L10: */
|
|
}
|
|
}
|
|
|
|
L20:
|
|
return 0;
|
|
|
|
/* End of DLAED1 */
|
|
|
|
} /* dlaed1_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|