Files
lammps/lib/linalg/dlaev2.cpp
Axel Kohlmeyer 1e8b2ad5a0 whitespace fixes
2022-12-28 13:48:43 -05:00

264 lines
7.0 KiB
C++

/* fortran/dlaev2.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* > \brief \b DLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DLAEV2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaev2.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaev2.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaev2.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 ) */
/* .. Scalar Arguments .. */
/* DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1 */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix */
/* > [ A B ] */
/* > [ B C ]. */
/* > On return, RT1 is the eigenvalue of larger absolute value, RT2 is the */
/* > eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right */
/* > eigenvector for RT1, giving the decomposition */
/* > */
/* > [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ] */
/* > [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ]. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION */
/* > The (1,1) element of the 2-by-2 matrix. */
/* > \endverbatim */
/* > */
/* > \param[in] B */
/* > \verbatim */
/* > B is DOUBLE PRECISION */
/* > The (1,2) element and the conjugate of the (2,1) element of */
/* > the 2-by-2 matrix. */
/* > \endverbatim */
/* > */
/* > \param[in] C */
/* > \verbatim */
/* > C is DOUBLE PRECISION */
/* > The (2,2) element of the 2-by-2 matrix. */
/* > \endverbatim */
/* > */
/* > \param[out] RT1 */
/* > \verbatim */
/* > RT1 is DOUBLE PRECISION */
/* > The eigenvalue of larger absolute value. */
/* > \endverbatim */
/* > */
/* > \param[out] RT2 */
/* > \verbatim */
/* > RT2 is DOUBLE PRECISION */
/* > The eigenvalue of smaller absolute value. */
/* > \endverbatim */
/* > */
/* > \param[out] CS1 */
/* > \verbatim */
/* > CS1 is DOUBLE PRECISION */
/* > \endverbatim */
/* > */
/* > \param[out] SN1 */
/* > \verbatim */
/* > SN1 is DOUBLE PRECISION */
/* > The vector (CS1, SN1) is a unit right eigenvector for RT1. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup OTHERauxiliary */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > RT1 is accurate to a few ulps barring over/underflow. */
/* > */
/* > RT2 may be inaccurate if there is massive cancellation in the */
/* > determinant A*C-B*B; higher precision or correctly rounded or */
/* > correctly truncated arithmetic would be needed to compute RT2 */
/* > accurately in all cases. */
/* > */
/* > CS1 and SN1 are accurate to a few ulps barring over/underflow. */
/* > */
/* > Overflow is possible only if RT1 is within a factor of 5 of overflow. */
/* > Underflow is harmless if the input data is 0 or exceeds */
/* > underflow_threshold / macheps. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int dlaev2_(doublereal *a, doublereal *b, doublereal *c__,
doublereal *rt1, doublereal *rt2, doublereal *cs1, doublereal *sn1)
{
/* System generated locals */
doublereal d__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
doublereal ab, df, cs, ct, tb, sm, tn, rt, adf, acs;
integer sgn1, sgn2;
doublereal acmn, acmx;
/* -- LAPACK auxiliary routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Compute the eigenvalues */
sm = *a + *c__;
df = *a - *c__;
adf = abs(df);
tb = *b + *b;
ab = abs(tb);
if (abs(*a) > abs(*c__)) {
acmx = *a;
acmn = *c__;
} else {
acmx = *c__;
acmn = *a;
}
if (adf > ab) {
/* Computing 2nd power */
d__1 = ab / adf;
rt = adf * sqrt(d__1 * d__1 + 1.);
} else if (adf < ab) {
/* Computing 2nd power */
d__1 = adf / ab;
rt = ab * sqrt(d__1 * d__1 + 1.);
} else {
/* Includes case AB=ADF=0 */
rt = ab * sqrt(2.);
}
if (sm < 0.) {
*rt1 = (sm - rt) * .5;
sgn1 = -1;
/* Order of execution important. */
/* To get fully accurate smaller eigenvalue, */
/* next line needs to be executed in higher precision. */
*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
} else if (sm > 0.) {
*rt1 = (sm + rt) * .5;
sgn1 = 1;
/* Order of execution important. */
/* To get fully accurate smaller eigenvalue, */
/* next line needs to be executed in higher precision. */
*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
} else {
/* Includes case RT1 = RT2 = 0 */
*rt1 = rt * .5;
*rt2 = rt * -.5;
sgn1 = 1;
}
/* Compute the eigenvector */
if (df >= 0.) {
cs = df + rt;
sgn2 = 1;
} else {
cs = df - rt;
sgn2 = -1;
}
acs = abs(cs);
if (acs > ab) {
ct = -tb / cs;
*sn1 = 1. / sqrt(ct * ct + 1.);
*cs1 = ct * *sn1;
} else {
if (ab == 0.) {
*cs1 = 1.;
*sn1 = 0.;
} else {
tn = -cs / tb;
*cs1 = 1. / sqrt(tn * tn + 1.);
*sn1 = tn * *cs1;
}
}
if (sgn1 == sgn2) {
tn = *cs1;
*cs1 = -(*sn1);
*sn1 = tn;
}
return 0;
/* End of DLAEV2 */
} /* dlaev2_ */
#ifdef __cplusplus
}
#endif