633 lines
22 KiB
C++
633 lines
22 KiB
C++
/* fortran/dlalsd.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static doublereal c_b6 = 0.;
|
|
static integer c__0 = 0;
|
|
static doublereal c_b11 = 1.;
|
|
|
|
/* > \brief \b DLALSD uses the singular value decomposition of A to solve the least squares problem. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DLALSD + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsd.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsd.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsd.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND, */
|
|
/* RANK, WORK, IWORK, INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* CHARACTER UPLO */
|
|
/* INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ */
|
|
/* DOUBLE PRECISION RCOND */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* INTEGER IWORK( * ) */
|
|
/* DOUBLE PRECISION B( LDB, * ), D( * ), E( * ), WORK( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DLALSD uses the singular value decomposition of A to solve the least */
|
|
/* > squares problem of finding X to minimize the Euclidean norm of each */
|
|
/* > column of A*X-B, where A is N-by-N upper bidiagonal, and X and B */
|
|
/* > are N-by-NRHS. The solution X overwrites B. */
|
|
/* > */
|
|
/* > The singular values of A smaller than RCOND times the largest */
|
|
/* > singular value are treated as zero in solving the least squares */
|
|
/* > problem; in this case a minimum norm solution is returned. */
|
|
/* > The actual singular values are returned in D in ascending order. */
|
|
/* > */
|
|
/* > This code makes very mild assumptions about floating point */
|
|
/* > arithmetic. It will work on machines with a guard digit in */
|
|
/* > add/subtract, or on those binary machines without guard digits */
|
|
/* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
|
|
/* > It could conceivably fail on hexadecimal or decimal machines */
|
|
/* > without guard digits, but we know of none. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > = 'U': D and E define an upper bidiagonal matrix. */
|
|
/* > = 'L': D and E define a lower bidiagonal matrix. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] SMLSIZ */
|
|
/* > \verbatim */
|
|
/* > SMLSIZ is INTEGER */
|
|
/* > The maximum size of the subproblems at the bottom of the */
|
|
/* > computation tree. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The dimension of the bidiagonal matrix. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NRHS */
|
|
/* > \verbatim */
|
|
/* > NRHS is INTEGER */
|
|
/* > The number of columns of B. NRHS must be at least 1. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] D */
|
|
/* > \verbatim */
|
|
/* > D is DOUBLE PRECISION array, dimension (N) */
|
|
/* > On entry D contains the main diagonal of the bidiagonal */
|
|
/* > matrix. On exit, if INFO = 0, D contains its singular values. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] E */
|
|
/* > \verbatim */
|
|
/* > E is DOUBLE PRECISION array, dimension (N-1) */
|
|
/* > Contains the super-diagonal entries of the bidiagonal matrix. */
|
|
/* > On exit, E has been destroyed. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] B */
|
|
/* > \verbatim */
|
|
/* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
|
|
/* > On input, B contains the right hand sides of the least */
|
|
/* > squares problem. On output, B contains the solution X. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDB */
|
|
/* > \verbatim */
|
|
/* > LDB is INTEGER */
|
|
/* > The leading dimension of B in the calling subprogram. */
|
|
/* > LDB must be at least max(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] RCOND */
|
|
/* > \verbatim */
|
|
/* > RCOND is DOUBLE PRECISION */
|
|
/* > The singular values of A less than or equal to RCOND times */
|
|
/* > the largest singular value are treated as zero in solving */
|
|
/* > the least squares problem. If RCOND is negative, */
|
|
/* > machine precision is used instead. */
|
|
/* > For example, if diag(S)*X=B were the least squares problem, */
|
|
/* > where diag(S) is a diagonal matrix of singular values, the */
|
|
/* > solution would be X(i) = B(i) / S(i) if S(i) is greater than */
|
|
/* > RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to */
|
|
/* > RCOND*max(S). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RANK */
|
|
/* > \verbatim */
|
|
/* > RANK is INTEGER */
|
|
/* > The number of singular values of A greater than RCOND times */
|
|
/* > the largest singular value. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is DOUBLE PRECISION array, dimension at least */
|
|
/* > (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2), */
|
|
/* > where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IWORK */
|
|
/* > \verbatim */
|
|
/* > IWORK is INTEGER array, dimension at least */
|
|
/* > (3*N*NLVL + 11*N) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit. */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
/* > > 0: The algorithm failed to compute a singular value while */
|
|
/* > working on the submatrix lying in rows and columns */
|
|
/* > INFO/(N+1) through MOD(INFO,N+1). */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup doubleOTHERcomputational */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
|
|
/* > California at Berkeley, USA \n */
|
|
/* > Osni Marques, LBNL/NERSC, USA \n */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int dlalsd_(char *uplo, integer *smlsiz, integer *n, integer
|
|
*nrhs, doublereal *d__, doublereal *e, doublereal *b, integer *ldb,
|
|
doublereal *rcond, integer *rank, doublereal *work, integer *iwork,
|
|
integer *info, ftnlen uplo_len)
|
|
{
|
|
/* System generated locals */
|
|
integer b_dim1, b_offset, i__1, i__2;
|
|
doublereal d__1;
|
|
|
|
/* Builtin functions */
|
|
double log(doublereal), d_sign(doublereal *, doublereal *);
|
|
|
|
/* Local variables */
|
|
integer c__, i__, j, k;
|
|
doublereal r__;
|
|
integer s, u, z__;
|
|
doublereal cs;
|
|
integer bx;
|
|
doublereal sn;
|
|
integer st, vt, nm1, st1;
|
|
doublereal eps;
|
|
integer iwk;
|
|
doublereal tol;
|
|
integer difl, difr;
|
|
doublereal rcnd;
|
|
integer perm, nsub;
|
|
extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
|
|
doublereal *, integer *, doublereal *, doublereal *);
|
|
integer nlvl, sqre, bxst;
|
|
extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
|
|
integer *, doublereal *, doublereal *, integer *, doublereal *,
|
|
integer *, doublereal *, doublereal *, integer *, ftnlen, ftnlen),
|
|
dcopy_(integer *, doublereal *, integer *, doublereal *, integer
|
|
*);
|
|
integer poles, sizei, nsize, nwork, icmpq1, icmpq2;
|
|
extern doublereal dlamch_(char *, ftnlen);
|
|
extern /* Subroutine */ int dlasda_(integer *, integer *, integer *,
|
|
integer *, doublereal *, doublereal *, doublereal *, integer *,
|
|
doublereal *, integer *, doublereal *, doublereal *, doublereal *,
|
|
doublereal *, integer *, integer *, integer *, integer *,
|
|
doublereal *, doublereal *, doublereal *, doublereal *, integer *,
|
|
integer *), dlalsa_(integer *, integer *, integer *, integer *,
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *,
|
|
integer *, doublereal *, integer *, doublereal *, doublereal *,
|
|
doublereal *, doublereal *, integer *, integer *, integer *,
|
|
integer *, doublereal *, doublereal *, doublereal *, doublereal *,
|
|
integer *, integer *), dlascl_(char *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *, integer *, doublereal *,
|
|
integer *, integer *, ftnlen);
|
|
extern integer idamax_(integer *, doublereal *, integer *);
|
|
extern /* Subroutine */ int dlasdq_(char *, integer *, integer *, integer
|
|
*, integer *, integer *, doublereal *, doublereal *, doublereal *,
|
|
integer *, doublereal *, integer *, doublereal *, integer *,
|
|
doublereal *, integer *, ftnlen), dlacpy_(char *, integer *,
|
|
integer *, doublereal *, integer *, doublereal *, integer *,
|
|
ftnlen), dlartg_(doublereal *, doublereal *, doublereal *,
|
|
doublereal *, doublereal *), dlaset_(char *, integer *, integer *,
|
|
doublereal *, doublereal *, doublereal *, integer *, ftnlen),
|
|
xerbla_(char *, integer *, ftnlen);
|
|
integer givcol;
|
|
extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *,
|
|
ftnlen);
|
|
extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
|
|
integer *, ftnlen);
|
|
doublereal orgnrm;
|
|
integer givnum, givptr, smlszp;
|
|
|
|
|
|
/* -- LAPACK computational routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--d__;
|
|
--e;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1;
|
|
b -= b_offset;
|
|
--work;
|
|
--iwork;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
if (*n < 0) {
|
|
*info = -3;
|
|
} else if (*nrhs < 1) {
|
|
*info = -4;
|
|
} else if (*ldb < 1 || *ldb < *n) {
|
|
*info = -8;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"DLALSD", &i__1, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
eps = dlamch_((char *)"Epsilon", (ftnlen)7);
|
|
|
|
/* Set up the tolerance. */
|
|
|
|
if (*rcond <= 0. || *rcond >= 1.) {
|
|
rcnd = eps;
|
|
} else {
|
|
rcnd = *rcond;
|
|
}
|
|
|
|
*rank = 0;
|
|
|
|
/* Quick return if possible. */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
} else if (*n == 1) {
|
|
if (d__[1] == 0.) {
|
|
dlaset_((char *)"A", &c__1, nrhs, &c_b6, &c_b6, &b[b_offset], ldb, (
|
|
ftnlen)1);
|
|
} else {
|
|
*rank = 1;
|
|
dlascl_((char *)"G", &c__0, &c__0, &d__[1], &c_b11, &c__1, nrhs, &b[
|
|
b_offset], ldb, info, (ftnlen)1);
|
|
d__[1] = abs(d__[1]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Rotate the matrix if it is lower bidiagonal. */
|
|
|
|
if (*(unsigned char *)uplo == 'L') {
|
|
i__1 = *n - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
|
|
d__[i__] = r__;
|
|
e[i__] = sn * d__[i__ + 1];
|
|
d__[i__ + 1] = cs * d__[i__ + 1];
|
|
if (*nrhs == 1) {
|
|
drot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
|
|
c__1, &cs, &sn);
|
|
} else {
|
|
work[(i__ << 1) - 1] = cs;
|
|
work[i__ * 2] = sn;
|
|
}
|
|
/* L10: */
|
|
}
|
|
if (*nrhs > 1) {
|
|
i__1 = *nrhs;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
i__2 = *n - 1;
|
|
for (j = 1; j <= i__2; ++j) {
|
|
cs = work[(j << 1) - 1];
|
|
sn = work[j * 2];
|
|
drot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__ *
|
|
b_dim1], &c__1, &cs, &sn);
|
|
/* L20: */
|
|
}
|
|
/* L30: */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Scale. */
|
|
|
|
nm1 = *n - 1;
|
|
orgnrm = dlanst_((char *)"M", n, &d__[1], &e[1], (ftnlen)1);
|
|
if (orgnrm == 0.) {
|
|
dlaset_((char *)"A", n, nrhs, &c_b6, &c_b6, &b[b_offset], ldb, (ftnlen)1);
|
|
return 0;
|
|
}
|
|
|
|
dlascl_((char *)"G", &c__0, &c__0, &orgnrm, &c_b11, n, &c__1, &d__[1], n, info, (
|
|
ftnlen)1);
|
|
dlascl_((char *)"G", &c__0, &c__0, &orgnrm, &c_b11, &nm1, &c__1, &e[1], &nm1,
|
|
info, (ftnlen)1);
|
|
|
|
/* If N is smaller than the minimum divide size SMLSIZ, then solve */
|
|
/* the problem with another solver. */
|
|
|
|
if (*n <= *smlsiz) {
|
|
nwork = *n * *n + 1;
|
|
dlaset_((char *)"A", n, n, &c_b6, &c_b11, &work[1], n, (ftnlen)1);
|
|
dlasdq_((char *)"U", &c__0, n, n, &c__0, nrhs, &d__[1], &e[1], &work[1], n, &
|
|
work[1], n, &b[b_offset], ldb, &work[nwork], info, (ftnlen)1);
|
|
if (*info != 0) {
|
|
return 0;
|
|
}
|
|
tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
if (d__[i__] <= tol) {
|
|
dlaset_((char *)"A", &c__1, nrhs, &c_b6, &c_b6, &b[i__ + b_dim1], ldb,
|
|
(ftnlen)1);
|
|
} else {
|
|
dlascl_((char *)"G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &b[
|
|
i__ + b_dim1], ldb, info, (ftnlen)1);
|
|
++(*rank);
|
|
}
|
|
/* L40: */
|
|
}
|
|
dgemm_((char *)"T", (char *)"N", n, nrhs, n, &c_b11, &work[1], n, &b[b_offset], ldb, &
|
|
c_b6, &work[nwork], n, (ftnlen)1, (ftnlen)1);
|
|
dlacpy_((char *)"A", n, nrhs, &work[nwork], n, &b[b_offset], ldb, (ftnlen)1);
|
|
|
|
/* Unscale. */
|
|
|
|
dlascl_((char *)"G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n,
|
|
info, (ftnlen)1);
|
|
dlasrt_((char *)"D", n, &d__[1], info, (ftnlen)1);
|
|
dlascl_((char *)"G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset],
|
|
ldb, info, (ftnlen)1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Book-keeping and setting up some constants. */
|
|
|
|
nlvl = (integer) (log((doublereal) (*n) / (doublereal) (*smlsiz + 1)) /
|
|
log(2.)) + 1;
|
|
|
|
smlszp = *smlsiz + 1;
|
|
|
|
u = 1;
|
|
vt = *smlsiz * *n + 1;
|
|
difl = vt + smlszp * *n;
|
|
difr = difl + nlvl * *n;
|
|
z__ = difr + (nlvl * *n << 1);
|
|
c__ = z__ + nlvl * *n;
|
|
s = c__ + *n;
|
|
poles = s + *n;
|
|
givnum = poles + (nlvl << 1) * *n;
|
|
bx = givnum + (nlvl << 1) * *n;
|
|
nwork = bx + *n * *nrhs;
|
|
|
|
sizei = *n + 1;
|
|
k = sizei + *n;
|
|
givptr = k + *n;
|
|
perm = givptr + *n;
|
|
givcol = perm + nlvl * *n;
|
|
iwk = givcol + (nlvl * *n << 1);
|
|
|
|
st = 1;
|
|
sqre = 0;
|
|
icmpq1 = 1;
|
|
icmpq2 = 0;
|
|
nsub = 0;
|
|
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
if ((d__1 = d__[i__], abs(d__1)) < eps) {
|
|
d__[i__] = d_sign(&eps, &d__[i__]);
|
|
}
|
|
/* L50: */
|
|
}
|
|
|
|
i__1 = nm1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
|
|
++nsub;
|
|
iwork[nsub] = st;
|
|
|
|
/* Subproblem found. First determine its size and then */
|
|
/* apply divide and conquer on it. */
|
|
|
|
if (i__ < nm1) {
|
|
|
|
/* A subproblem with E(I) small for I < NM1. */
|
|
|
|
nsize = i__ - st + 1;
|
|
iwork[sizei + nsub - 1] = nsize;
|
|
} else if ((d__1 = e[i__], abs(d__1)) >= eps) {
|
|
|
|
/* A subproblem with E(NM1) not too small but I = NM1. */
|
|
|
|
nsize = *n - st + 1;
|
|
iwork[sizei + nsub - 1] = nsize;
|
|
} else {
|
|
|
|
/* A subproblem with E(NM1) small. This implies an */
|
|
/* 1-by-1 subproblem at D(N), which is not solved */
|
|
/* explicitly. */
|
|
|
|
nsize = i__ - st + 1;
|
|
iwork[sizei + nsub - 1] = nsize;
|
|
++nsub;
|
|
iwork[nsub] = *n;
|
|
iwork[sizei + nsub - 1] = 1;
|
|
dcopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
|
|
}
|
|
st1 = st - 1;
|
|
if (nsize == 1) {
|
|
|
|
/* This is a 1-by-1 subproblem and is not solved */
|
|
/* explicitly. */
|
|
|
|
dcopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
|
|
} else if (nsize <= *smlsiz) {
|
|
|
|
/* This is a small subproblem and is solved by DLASDQ. */
|
|
|
|
dlaset_((char *)"A", &nsize, &nsize, &c_b6, &c_b11, &work[vt + st1],
|
|
n, (ftnlen)1);
|
|
dlasdq_((char *)"U", &c__0, &nsize, &nsize, &c__0, nrhs, &d__[st], &e[
|
|
st], &work[vt + st1], n, &work[nwork], n, &b[st +
|
|
b_dim1], ldb, &work[nwork], info, (ftnlen)1);
|
|
if (*info != 0) {
|
|
return 0;
|
|
}
|
|
dlacpy_((char *)"A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx +
|
|
st1], n, (ftnlen)1);
|
|
} else {
|
|
|
|
/* A large problem. Solve it using divide and conquer. */
|
|
|
|
dlasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
|
|
work[u + st1], n, &work[vt + st1], &iwork[k + st1], &
|
|
work[difl + st1], &work[difr + st1], &work[z__ + st1],
|
|
&work[poles + st1], &iwork[givptr + st1], &iwork[
|
|
givcol + st1], n, &iwork[perm + st1], &work[givnum +
|
|
st1], &work[c__ + st1], &work[s + st1], &work[nwork],
|
|
&iwork[iwk], info);
|
|
if (*info != 0) {
|
|
return 0;
|
|
}
|
|
bxst = bx + st1;
|
|
dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
|
|
work[bxst], n, &work[u + st1], n, &work[vt + st1], &
|
|
iwork[k + st1], &work[difl + st1], &work[difr + st1],
|
|
&work[z__ + st1], &work[poles + st1], &iwork[givptr +
|
|
st1], &iwork[givcol + st1], n, &iwork[perm + st1], &
|
|
work[givnum + st1], &work[c__ + st1], &work[s + st1],
|
|
&work[nwork], &iwork[iwk], info);
|
|
if (*info != 0) {
|
|
return 0;
|
|
}
|
|
}
|
|
st = i__ + 1;
|
|
}
|
|
/* L60: */
|
|
}
|
|
|
|
/* Apply the singular values and treat the tiny ones as zero. */
|
|
|
|
tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
|
|
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
/* Some of the elements in D can be negative because 1-by-1 */
|
|
/* subproblems were not solved explicitly. */
|
|
|
|
if ((d__1 = d__[i__], abs(d__1)) <= tol) {
|
|
dlaset_((char *)"A", &c__1, nrhs, &c_b6, &c_b6, &work[bx + i__ - 1], n, (
|
|
ftnlen)1);
|
|
} else {
|
|
++(*rank);
|
|
dlascl_((char *)"G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &work[
|
|
bx + i__ - 1], n, info, (ftnlen)1);
|
|
}
|
|
d__[i__] = (d__1 = d__[i__], abs(d__1));
|
|
/* L70: */
|
|
}
|
|
|
|
/* Now apply back the right singular vectors. */
|
|
|
|
icmpq2 = 1;
|
|
i__1 = nsub;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
st = iwork[i__];
|
|
st1 = st - 1;
|
|
nsize = iwork[sizei + i__ - 1];
|
|
bxst = bx + st1;
|
|
if (nsize == 1) {
|
|
dcopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
|
|
} else if (nsize <= *smlsiz) {
|
|
dgemm_((char *)"T", (char *)"N", &nsize, nrhs, &nsize, &c_b11, &work[vt + st1], n,
|
|
&work[bxst], n, &c_b6, &b[st + b_dim1], ldb, (ftnlen)1, (
|
|
ftnlen)1);
|
|
} else {
|
|
dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st +
|
|
b_dim1], ldb, &work[u + st1], n, &work[vt + st1], &iwork[
|
|
k + st1], &work[difl + st1], &work[difr + st1], &work[z__
|
|
+ st1], &work[poles + st1], &iwork[givptr + st1], &iwork[
|
|
givcol + st1], n, &iwork[perm + st1], &work[givnum + st1],
|
|
&work[c__ + st1], &work[s + st1], &work[nwork], &iwork[
|
|
iwk], info);
|
|
if (*info != 0) {
|
|
return 0;
|
|
}
|
|
}
|
|
/* L80: */
|
|
}
|
|
|
|
/* Unscale and sort the singular values. */
|
|
|
|
dlascl_((char *)"G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n, info, (
|
|
ftnlen)1);
|
|
dlasrt_((char *)"D", n, &d__[1], info, (ftnlen)1);
|
|
dlascl_((char *)"G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset], ldb,
|
|
info, (ftnlen)1);
|
|
|
|
return 0;
|
|
|
|
/* End of DLALSD */
|
|
|
|
} /* dlalsd_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|