240 lines
7.0 KiB
C++
240 lines
7.0 KiB
C++
/* fortran/dlanst.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief \b DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the ele
|
|
ment of largest absolute value of a real symmetric tridiagonal matrix. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DLANST + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlanst.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlanst.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlanst.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* CHARACTER NORM */
|
|
/* INTEGER N */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* DOUBLE PRECISION D( * ), E( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DLANST returns the value of the one norm, or the Frobenius norm, or */
|
|
/* > the infinity norm, or the element of largest absolute value of a */
|
|
/* > real symmetric tridiagonal matrix A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \return DLANST */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
|
|
/* > ( */
|
|
/* > ( norm1(A), NORM = '1', 'O' or 'o' */
|
|
/* > ( */
|
|
/* > ( normI(A), NORM = 'I' or 'i' */
|
|
/* > ( */
|
|
/* > ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
|
|
/* > */
|
|
/* > where norm1 denotes the one norm of a matrix (maximum column sum), */
|
|
/* > normI denotes the infinity norm of a matrix (maximum row sum) and */
|
|
/* > normF denotes the Frobenius norm of a matrix (square root of sum of */
|
|
/* > squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] NORM */
|
|
/* > \verbatim */
|
|
/* > NORM is CHARACTER*1 */
|
|
/* > Specifies the value to be returned in DLANST as described */
|
|
/* > above. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix A. N >= 0. When N = 0, DLANST is */
|
|
/* > set to zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] D */
|
|
/* > \verbatim */
|
|
/* > D is DOUBLE PRECISION array, dimension (N) */
|
|
/* > The diagonal elements of A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] E */
|
|
/* > \verbatim */
|
|
/* > E is DOUBLE PRECISION array, dimension (N-1) */
|
|
/* > The (n-1) sub-diagonal or super-diagonal elements of A. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup OTHERauxiliary */
|
|
|
|
/* ===================================================================== */
|
|
doublereal dlanst_(char *norm, integer *n, doublereal *d__, doublereal *e,
|
|
ftnlen norm_len)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
doublereal ret_val, d__1, d__2, d__3;
|
|
|
|
/* Builtin functions */
|
|
double sqrt(doublereal);
|
|
|
|
/* Local variables */
|
|
integer i__;
|
|
doublereal sum, scale;
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
doublereal anorm;
|
|
extern logical disnan_(doublereal *);
|
|
extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
|
|
doublereal *, doublereal *);
|
|
|
|
|
|
/* -- LAPACK auxiliary routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Parameter adjustments */
|
|
--e;
|
|
--d__;
|
|
|
|
/* Function Body */
|
|
if (*n <= 0) {
|
|
anorm = 0.;
|
|
} else if (lsame_(norm, (char *)"M", (ftnlen)1, (ftnlen)1)) {
|
|
|
|
/* Find max(abs(A(i,j))). */
|
|
|
|
anorm = (d__1 = d__[*n], abs(d__1));
|
|
i__1 = *n - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
sum = (d__1 = d__[i__], abs(d__1));
|
|
if (anorm < sum || disnan_(&sum)) {
|
|
anorm = sum;
|
|
}
|
|
sum = (d__1 = e[i__], abs(d__1));
|
|
if (anorm < sum || disnan_(&sum)) {
|
|
anorm = sum;
|
|
}
|
|
/* L10: */
|
|
}
|
|
} else if (lsame_(norm, (char *)"O", (ftnlen)1, (ftnlen)1) || *(unsigned char *)
|
|
norm == '1' || lsame_(norm, (char *)"I", (ftnlen)1, (ftnlen)1)) {
|
|
|
|
/* Find norm1(A). */
|
|
|
|
if (*n == 1) {
|
|
anorm = abs(d__[1]);
|
|
} else {
|
|
anorm = abs(d__[1]) + abs(e[1]);
|
|
sum = (d__1 = e[*n - 1], abs(d__1)) + (d__2 = d__[*n], abs(d__2));
|
|
if (anorm < sum || disnan_(&sum)) {
|
|
anorm = sum;
|
|
}
|
|
i__1 = *n - 1;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
sum = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[i__], abs(d__2)
|
|
) + (d__3 = e[i__ - 1], abs(d__3));
|
|
if (anorm < sum || disnan_(&sum)) {
|
|
anorm = sum;
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
} else if (lsame_(norm, (char *)"F", (ftnlen)1, (ftnlen)1) || lsame_(norm, (char *)"E", (
|
|
ftnlen)1, (ftnlen)1)) {
|
|
|
|
/* Find normF(A). */
|
|
|
|
scale = 0.;
|
|
sum = 1.;
|
|
if (*n > 1) {
|
|
i__1 = *n - 1;
|
|
dlassq_(&i__1, &e[1], &c__1, &scale, &sum);
|
|
sum *= 2;
|
|
}
|
|
dlassq_(n, &d__[1], &c__1, &scale, &sum);
|
|
anorm = scale * sqrt(sum);
|
|
}
|
|
|
|
ret_val = anorm;
|
|
return ret_val;
|
|
|
|
/* End of DLANST */
|
|
|
|
} /* dlanst_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|