241 lines
6.3 KiB
C++
241 lines
6.3 KiB
C++
/* fortran/dlarfg.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* > \brief \b DLARFG generates an elementary reflector (Householder matrix). */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DLARFG + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarfg.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarfg.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarfg.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* INTEGER INCX, N */
|
|
/* DOUBLE PRECISION ALPHA, TAU */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* DOUBLE PRECISION X( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DLARFG generates a real elementary reflector H of order n, such */
|
|
/* > that */
|
|
/* > */
|
|
/* > H * ( alpha ) = ( beta ), H**T * H = I. */
|
|
/* > ( x ) ( 0 ) */
|
|
/* > */
|
|
/* > where alpha and beta are scalars, and x is an (n-1)-element real */
|
|
/* > vector. H is represented in the form */
|
|
/* > */
|
|
/* > H = I - tau * ( 1 ) * ( 1 v**T ) , */
|
|
/* > ( v ) */
|
|
/* > */
|
|
/* > where tau is a real scalar and v is a real (n-1)-element */
|
|
/* > vector. */
|
|
/* > */
|
|
/* > If the elements of x are all zero, then tau = 0 and H is taken to be */
|
|
/* > the unit matrix. */
|
|
/* > */
|
|
/* > Otherwise 1 <= tau <= 2. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the elementary reflector. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] ALPHA */
|
|
/* > \verbatim */
|
|
/* > ALPHA is DOUBLE PRECISION */
|
|
/* > On entry, the value alpha. */
|
|
/* > On exit, it is overwritten with the value beta. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] X */
|
|
/* > \verbatim */
|
|
/* > X is DOUBLE PRECISION array, dimension */
|
|
/* > (1+(N-2)*abs(INCX)) */
|
|
/* > On entry, the vector x. */
|
|
/* > On exit, it is overwritten with the vector v. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] INCX */
|
|
/* > \verbatim */
|
|
/* > INCX is INTEGER */
|
|
/* > The increment between elements of X. INCX > 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] TAU */
|
|
/* > \verbatim */
|
|
/* > TAU is DOUBLE PRECISION */
|
|
/* > The value tau. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup doubleOTHERauxiliary */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int dlarfg_(integer *n, doublereal *alpha, doublereal *x,
|
|
integer *incx, doublereal *tau)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1;
|
|
doublereal d__1;
|
|
|
|
/* Builtin functions */
|
|
double d_sign(doublereal *, doublereal *);
|
|
|
|
/* Local variables */
|
|
integer j, knt;
|
|
doublereal beta;
|
|
extern doublereal dnrm2_(integer *, doublereal *, integer *);
|
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
|
integer *);
|
|
doublereal xnorm;
|
|
extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *,
|
|
ftnlen);
|
|
doublereal safmin, rsafmn;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Parameter adjustments */
|
|
--x;
|
|
|
|
/* Function Body */
|
|
if (*n <= 1) {
|
|
*tau = 0.;
|
|
return 0;
|
|
}
|
|
|
|
i__1 = *n - 1;
|
|
xnorm = dnrm2_(&i__1, &x[1], incx);
|
|
|
|
if (xnorm == 0.) {
|
|
|
|
/* H = I */
|
|
|
|
*tau = 0.;
|
|
} else {
|
|
|
|
/* general case */
|
|
|
|
d__1 = dlapy2_(alpha, &xnorm);
|
|
beta = -d_sign(&d__1, alpha);
|
|
safmin = dlamch_((char *)"S", (ftnlen)1) / dlamch_((char *)"E", (ftnlen)1);
|
|
knt = 0;
|
|
if (abs(beta) < safmin) {
|
|
|
|
/* XNORM, BETA may be inaccurate; scale X and recompute them */
|
|
|
|
rsafmn = 1. / safmin;
|
|
L10:
|
|
++knt;
|
|
i__1 = *n - 1;
|
|
dscal_(&i__1, &rsafmn, &x[1], incx);
|
|
beta *= rsafmn;
|
|
*alpha *= rsafmn;
|
|
if (abs(beta) < safmin && knt < 20) {
|
|
goto L10;
|
|
}
|
|
|
|
/* New BETA is at most 1, at least SAFMIN */
|
|
|
|
i__1 = *n - 1;
|
|
xnorm = dnrm2_(&i__1, &x[1], incx);
|
|
d__1 = dlapy2_(alpha, &xnorm);
|
|
beta = -d_sign(&d__1, alpha);
|
|
}
|
|
*tau = (beta - *alpha) / beta;
|
|
i__1 = *n - 1;
|
|
d__1 = 1. / (*alpha - beta);
|
|
dscal_(&i__1, &d__1, &x[1], incx);
|
|
|
|
/* If ALPHA is subnormal, it may lose relative accuracy */
|
|
|
|
i__1 = knt;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
beta *= safmin;
|
|
/* L20: */
|
|
}
|
|
*alpha = beta;
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of DLARFG */
|
|
|
|
} /* dlarfg_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|