Files
lammps/lib/linalg/dlascl.cpp
Axel Kohlmeyer 1e8b2ad5a0 whitespace fixes
2022-12-28 13:48:43 -05:00

449 lines
12 KiB
C++

/* fortran/dlascl.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* > \brief \b DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DLASCL + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlascl.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlascl.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlascl.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER TYPE */
/* INTEGER INFO, KL, KU, LDA, M, N */
/* DOUBLE PRECISION CFROM, CTO */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A( LDA, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DLASCL multiplies the M by N real matrix A by the real scalar */
/* > CTO/CFROM. This is done without over/underflow as long as the final */
/* > result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that */
/* > A may be full, upper triangular, lower triangular, upper Hessenberg, */
/* > or banded. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] TYPE */
/* > \verbatim */
/* > TYPE is CHARACTER*1 */
/* > TYPE indices the storage type of the input matrix. */
/* > = 'G': A is a full matrix. */
/* > = 'L': A is a lower triangular matrix. */
/* > = 'U': A is an upper triangular matrix. */
/* > = 'H': A is an upper Hessenberg matrix. */
/* > = 'B': A is a symmetric band matrix with lower bandwidth KL */
/* > and upper bandwidth KU and with the only the lower */
/* > half stored. */
/* > = 'Q': A is a symmetric band matrix with lower bandwidth KL */
/* > and upper bandwidth KU and with the only the upper */
/* > half stored. */
/* > = 'Z': A is a band matrix with lower bandwidth KL and upper */
/* > bandwidth KU. See DGBTRF for storage details. */
/* > \endverbatim */
/* > */
/* > \param[in] KL */
/* > \verbatim */
/* > KL is INTEGER */
/* > The lower bandwidth of A. Referenced only if TYPE = 'B', */
/* > 'Q' or 'Z'. */
/* > \endverbatim */
/* > */
/* > \param[in] KU */
/* > \verbatim */
/* > KU is INTEGER */
/* > The upper bandwidth of A. Referenced only if TYPE = 'B', */
/* > 'Q' or 'Z'. */
/* > \endverbatim */
/* > */
/* > \param[in] CFROM */
/* > \verbatim */
/* > CFROM is DOUBLE PRECISION */
/* > \endverbatim */
/* > */
/* > \param[in] CTO */
/* > \verbatim */
/* > CTO is DOUBLE PRECISION */
/* > */
/* > The matrix A is multiplied by CTO/CFROM. A(I,J) is computed */
/* > without over/underflow if the final result CTO*A(I,J)/CFROM */
/* > can be represented without over/underflow. CFROM must be */
/* > nonzero. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > The matrix to be multiplied by CTO/CFROM. See TYPE for the */
/* > storage type. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. */
/* > If TYPE = 'G', 'L', 'U', 'H', LDA >= max(1,M); */
/* > TYPE = 'B', LDA >= KL+1; */
/* > TYPE = 'Q', LDA >= KU+1; */
/* > TYPE = 'Z', LDA >= 2*KL+KU+1. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > 0 - successful exit */
/* > <0 - if INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup OTHERauxiliary */
/* ===================================================================== */
/* Subroutine */ int dlascl_(char *type__, integer *kl, integer *ku,
doublereal *cfrom, doublereal *cto, integer *m, integer *n,
doublereal *a, integer *lda, integer *info, ftnlen type_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
/* Local variables */
integer i__, j, k1, k2, k3, k4;
doublereal mul, cto1;
logical done;
doublereal ctoc;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer itype;
doublereal cfrom1;
extern doublereal dlamch_(char *, ftnlen);
doublereal cfromc;
extern logical disnan_(doublereal *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
doublereal bignum, smlnum;
/* -- LAPACK auxiliary routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
/* Function Body */
*info = 0;
if (lsame_(type__, (char *)"G", (ftnlen)1, (ftnlen)1)) {
itype = 0;
} else if (lsame_(type__, (char *)"L", (ftnlen)1, (ftnlen)1)) {
itype = 1;
} else if (lsame_(type__, (char *)"U", (ftnlen)1, (ftnlen)1)) {
itype = 2;
} else if (lsame_(type__, (char *)"H", (ftnlen)1, (ftnlen)1)) {
itype = 3;
} else if (lsame_(type__, (char *)"B", (ftnlen)1, (ftnlen)1)) {
itype = 4;
} else if (lsame_(type__, (char *)"Q", (ftnlen)1, (ftnlen)1)) {
itype = 5;
} else if (lsame_(type__, (char *)"Z", (ftnlen)1, (ftnlen)1)) {
itype = 6;
} else {
itype = -1;
}
if (itype == -1) {
*info = -1;
} else if (*cfrom == 0. || disnan_(cfrom)) {
*info = -4;
} else if (disnan_(cto)) {
*info = -5;
} else if (*m < 0) {
*info = -6;
} else if (*n < 0 || itype == 4 && *n != *m || itype == 5 && *n != *m) {
*info = -7;
} else if (itype <= 3 && *lda < max(1,*m)) {
*info = -9;
} else if (itype >= 4) {
/* Computing MAX */
i__1 = *m - 1;
if (*kl < 0 || *kl > max(i__1,0)) {
*info = -2;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = *n - 1;
if (*ku < 0 || *ku > max(i__1,0) || (itype == 4 || itype == 5) &&
*kl != *ku) {
*info = -3;
} else if (itype == 4 && *lda < *kl + 1 || itype == 5 && *lda < *
ku + 1 || itype == 6 && *lda < (*kl << 1) + *ku + 1) {
*info = -9;
}
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DLASCL", &i__1, (ftnlen)6);
return 0;
}
/* Quick return if possible */
if (*n == 0 || *m == 0) {
return 0;
}
/* Get machine parameters */
smlnum = dlamch_((char *)"S", (ftnlen)1);
bignum = 1. / smlnum;
cfromc = *cfrom;
ctoc = *cto;
L10:
cfrom1 = cfromc * smlnum;
if (cfrom1 == cfromc) {
/* CFROMC is an inf. Multiply by a correctly signed zero for */
/* finite CTOC, or a NaN if CTOC is infinite. */
mul = ctoc / cfromc;
done = TRUE_;
cto1 = ctoc;
} else {
cto1 = ctoc / bignum;
if (cto1 == ctoc) {
/* CTOC is either 0 or an inf. In both cases, CTOC itself */
/* serves as the correct multiplication factor. */
mul = ctoc;
done = TRUE_;
cfromc = 1.;
} else if (abs(cfrom1) > abs(ctoc) && ctoc != 0.) {
mul = smlnum;
done = FALSE_;
cfromc = cfrom1;
} else if (abs(cto1) > abs(cfromc)) {
mul = bignum;
done = FALSE_;
ctoc = cto1;
} else {
mul = ctoc / cfromc;
done = TRUE_;
if (mul == 1.) {
return 0;
}
}
}
if (itype == 0) {
/* Full matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] *= mul;
/* L20: */
}
/* L30: */
}
} else if (itype == 1) {
/* Lower triangular matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = j; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] *= mul;
/* L40: */
}
/* L50: */
}
} else if (itype == 2) {
/* Upper triangular matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = min(j,*m);
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] *= mul;
/* L60: */
}
/* L70: */
}
} else if (itype == 3) {
/* Upper Hessenberg matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__3 = j + 1;
i__2 = min(i__3,*m);
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] *= mul;
/* L80: */
}
/* L90: */
}
} else if (itype == 4) {
/* Lower half of a symmetric band matrix */
k3 = *kl + 1;
k4 = *n + 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__3 = k3, i__4 = k4 - j;
i__2 = min(i__3,i__4);
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] *= mul;
/* L100: */
}
/* L110: */
}
} else if (itype == 5) {
/* Upper half of a symmetric band matrix */
k1 = *ku + 2;
k3 = *ku + 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
i__2 = k1 - j;
i__3 = k3;
for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
a[i__ + j * a_dim1] *= mul;
/* L120: */
}
/* L130: */
}
} else if (itype == 6) {
/* Band matrix */
k1 = *kl + *ku + 2;
k2 = *kl + 1;
k3 = (*kl << 1) + *ku + 1;
k4 = *kl + *ku + 1 + *m;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
i__3 = k1 - j;
/* Computing MIN */
i__4 = k3, i__5 = k4 - j;
i__2 = min(i__4,i__5);
for (i__ = max(i__3,k2); i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] *= mul;
/* L140: */
}
/* L150: */
}
}
if (! done) {
goto L10;
}
return 0;
/* End of DLASCL */
} /* dlascl_ */
#ifdef __cplusplus
}
#endif