233 lines
7.3 KiB
C++
233 lines
7.3 KiB
C++
/* fortran/dposv.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* > \brief <b> DPOSV computes the solution to system of linear equations A * X = B for PO matrices</b> */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DPOSV + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dposv.f
|
|
"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dposv.f
|
|
"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dposv.f
|
|
"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DPOSV( UPLO, N, NRHS, A, LDA, B, LDB, INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* CHARACTER UPLO */
|
|
/* INTEGER INFO, LDA, LDB, N, NRHS */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* DOUBLE PRECISION A( LDA, * ), B( LDB, * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DPOSV computes the solution to a real system of linear equations */
|
|
/* > A * X = B, */
|
|
/* > where A is an N-by-N symmetric positive definite matrix and X and B */
|
|
/* > are N-by-NRHS matrices. */
|
|
/* > */
|
|
/* > The Cholesky decomposition is used to factor A as */
|
|
/* > A = U**T* U, if UPLO = 'U', or */
|
|
/* > A = L * L**T, if UPLO = 'L', */
|
|
/* > where U is an upper triangular matrix and L is a lower triangular */
|
|
/* > matrix. The factored form of A is then used to solve the system of */
|
|
/* > equations A * X = B. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > = 'U': Upper triangle of A is stored; */
|
|
/* > = 'L': Lower triangle of A is stored. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The number of linear equations, i.e., the order of the */
|
|
/* > matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NRHS */
|
|
/* > \verbatim */
|
|
/* > NRHS is INTEGER */
|
|
/* > The number of right hand sides, i.e., the number of columns */
|
|
/* > of the matrix B. NRHS >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
|
|
/* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
|
|
/* > N-by-N upper triangular part of A contains the upper */
|
|
/* > triangular part of the matrix A, and the strictly lower */
|
|
/* > triangular part of A is not referenced. If UPLO = 'L', the */
|
|
/* > leading N-by-N lower triangular part of A contains the lower */
|
|
/* > triangular part of the matrix A, and the strictly upper */
|
|
/* > triangular part of A is not referenced. */
|
|
/* > */
|
|
/* > On exit, if INFO = 0, the factor U or L from the Cholesky */
|
|
/* > factorization A = U**T*U or A = L*L**T. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= max(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] B */
|
|
/* > \verbatim */
|
|
/* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
|
|
/* > On entry, the N-by-NRHS right hand side matrix B. */
|
|
/* > On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDB */
|
|
/* > \verbatim */
|
|
/* > LDB is INTEGER */
|
|
/* > The leading dimension of the array B. LDB >= max(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > > 0: if INFO = i, the leading minor of order i of A is not */
|
|
/* > positive definite, so the factorization could not be */
|
|
/* > completed, and the solution has not been computed. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup doublePOsolve */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int dposv_(char *uplo, integer *n, integer *nrhs, doublereal
|
|
*a, integer *lda, doublereal *b, integer *ldb, integer *info, ftnlen
|
|
uplo_len)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, b_dim1, b_offset, i__1;
|
|
|
|
/* Local variables */
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), dpotrf_(
|
|
char *, integer *, doublereal *, integer *, integer *, ftnlen),
|
|
dpotrs_(char *, integer *, integer *, doublereal *, integer *,
|
|
doublereal *, integer *, integer *, ftnlen);
|
|
|
|
|
|
/* -- LAPACK driver routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1;
|
|
b -= b_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
if (! lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, (char *)"L", (
|
|
ftnlen)1, (ftnlen)1)) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*nrhs < 0) {
|
|
*info = -3;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -5;
|
|
} else if (*ldb < max(1,*n)) {
|
|
*info = -7;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"DPOSV ", &i__1, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Compute the Cholesky factorization A = U**T*U or A = L*L**T. */
|
|
|
|
dpotrf_(uplo, n, &a[a_offset], lda, info, (ftnlen)1);
|
|
if (*info == 0) {
|
|
|
|
/* Solve the system A*X = B, overwriting B with X. */
|
|
|
|
dpotrs_(uplo, n, nrhs, &a[a_offset], lda, &b[b_offset], ldb, info, (
|
|
ftnlen)1);
|
|
|
|
}
|
|
return 0;
|
|
|
|
/* End of DPOSV */
|
|
|
|
} /* dposv_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|