370 lines
11 KiB
C++
370 lines
11 KiB
C++
/* fortran/dsyev.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static integer c__0 = 0;
|
|
static doublereal c_b17 = 1.;
|
|
|
|
/* > \brief <b> DSYEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matr
|
|
ices</b> */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DSYEV + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyev.f
|
|
"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyev.f
|
|
"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyev.f
|
|
"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* CHARACTER JOBZ, UPLO */
|
|
/* INTEGER INFO, LDA, LWORK, N */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DSYEV computes all eigenvalues and, optionally, eigenvectors of a */
|
|
/* > real symmetric matrix A. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] JOBZ */
|
|
/* > \verbatim */
|
|
/* > JOBZ is CHARACTER*1 */
|
|
/* > = 'N': Compute eigenvalues only; */
|
|
/* > = 'V': Compute eigenvalues and eigenvectors. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > = 'U': Upper triangle of A is stored; */
|
|
/* > = 'L': Lower triangle of A is stored. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is DOUBLE PRECISION array, dimension (LDA, N) */
|
|
/* > On entry, the symmetric matrix A. If UPLO = 'U', the */
|
|
/* > leading N-by-N upper triangular part of A contains the */
|
|
/* > upper triangular part of the matrix A. If UPLO = 'L', */
|
|
/* > the leading N-by-N lower triangular part of A contains */
|
|
/* > the lower triangular part of the matrix A. */
|
|
/* > On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
|
|
/* > orthonormal eigenvectors of the matrix A. */
|
|
/* > If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */
|
|
/* > or the upper triangle (if UPLO='U') of A, including the */
|
|
/* > diagonal, is destroyed. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= max(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] W */
|
|
/* > \verbatim */
|
|
/* > W is DOUBLE PRECISION array, dimension (N) */
|
|
/* > If INFO = 0, the eigenvalues in ascending order. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
|
|
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LWORK */
|
|
/* > \verbatim */
|
|
/* > LWORK is INTEGER */
|
|
/* > The length of the array WORK. LWORK >= max(1,3*N-1). */
|
|
/* > For optimal efficiency, LWORK >= (NB+2)*N, */
|
|
/* > where NB is the blocksize for DSYTRD returned by ILAENV. */
|
|
/* > */
|
|
/* > If LWORK = -1, then a workspace query is assumed; the routine */
|
|
/* > only calculates the optimal size of the WORK array, returns */
|
|
/* > this value as the first entry of the WORK array, and no error */
|
|
/* > message related to LWORK is issued by XERBLA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > > 0: if INFO = i, the algorithm failed to converge; i */
|
|
/* > off-diagonal elements of an intermediate tridiagonal */
|
|
/* > form did not converge to zero. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup doubleSYeigen */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int dsyev_(char *jobz, char *uplo, integer *n, doublereal *a,
|
|
integer *lda, doublereal *w, doublereal *work, integer *lwork,
|
|
integer *info, ftnlen jobz_len, ftnlen uplo_len)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2;
|
|
doublereal d__1;
|
|
|
|
/* Builtin functions */
|
|
double sqrt(doublereal);
|
|
|
|
/* Local variables */
|
|
integer nb;
|
|
doublereal eps;
|
|
integer inde;
|
|
doublereal anrm;
|
|
integer imax;
|
|
doublereal rmin, rmax;
|
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
|
integer *);
|
|
doublereal sigma;
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
integer iinfo;
|
|
logical lower, wantz;
|
|
extern doublereal dlamch_(char *, ftnlen);
|
|
integer iscale;
|
|
extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *, integer *, doublereal *,
|
|
integer *, integer *, ftnlen);
|
|
doublereal safmin;
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
doublereal bignum;
|
|
integer indtau;
|
|
extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
|
|
integer *);
|
|
extern doublereal dlansy_(char *, char *, integer *, doublereal *,
|
|
integer *, doublereal *, ftnlen, ftnlen);
|
|
integer indwrk;
|
|
extern /* Subroutine */ int dorgtr_(char *, integer *, doublereal *,
|
|
integer *, doublereal *, doublereal *, integer *, integer *,
|
|
ftnlen), dsteqr_(char *, integer *, doublereal *, doublereal *,
|
|
doublereal *, integer *, doublereal *, integer *, ftnlen),
|
|
dsytrd_(char *, integer *, doublereal *, integer *, doublereal *,
|
|
doublereal *, doublereal *, doublereal *, integer *, integer *,
|
|
ftnlen);
|
|
integer llwork;
|
|
doublereal smlnum;
|
|
integer lwkopt;
|
|
logical lquery;
|
|
|
|
|
|
/* -- LAPACK driver routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--w;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
wantz = lsame_(jobz, (char *)"V", (ftnlen)1, (ftnlen)1);
|
|
lower = lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1);
|
|
lquery = *lwork == -1;
|
|
|
|
*info = 0;
|
|
if (! (wantz || lsame_(jobz, (char *)"N", (ftnlen)1, (ftnlen)1))) {
|
|
*info = -1;
|
|
} else if (! (lower || lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1))) {
|
|
*info = -2;
|
|
} else if (*n < 0) {
|
|
*info = -3;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -5;
|
|
}
|
|
|
|
if (*info == 0) {
|
|
nb = ilaenv_(&c__1, (char *)"DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
|
|
(ftnlen)1);
|
|
/* Computing MAX */
|
|
i__1 = 1, i__2 = (nb + 2) * *n;
|
|
lwkopt = max(i__1,i__2);
|
|
work[1] = (doublereal) lwkopt;
|
|
|
|
/* Computing MAX */
|
|
i__1 = 1, i__2 = *n * 3 - 1;
|
|
if (*lwork < max(i__1,i__2) && ! lquery) {
|
|
*info = -8;
|
|
}
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"DSYEV ", &i__1, (ftnlen)6);
|
|
return 0;
|
|
} else if (lquery) {
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (*n == 1) {
|
|
w[1] = a[a_dim1 + 1];
|
|
work[1] = 2.;
|
|
if (wantz) {
|
|
a[a_dim1 + 1] = 1.;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Get machine constants. */
|
|
|
|
safmin = dlamch_((char *)"Safe minimum", (ftnlen)12);
|
|
eps = dlamch_((char *)"Precision", (ftnlen)9);
|
|
smlnum = safmin / eps;
|
|
bignum = 1. / smlnum;
|
|
rmin = sqrt(smlnum);
|
|
rmax = sqrt(bignum);
|
|
|
|
/* Scale matrix to allowable range, if necessary. */
|
|
|
|
anrm = dlansy_((char *)"M", uplo, n, &a[a_offset], lda, &work[1], (ftnlen)1, (
|
|
ftnlen)1);
|
|
iscale = 0;
|
|
if (anrm > 0. && anrm < rmin) {
|
|
iscale = 1;
|
|
sigma = rmin / anrm;
|
|
} else if (anrm > rmax) {
|
|
iscale = 1;
|
|
sigma = rmax / anrm;
|
|
}
|
|
if (iscale == 1) {
|
|
dlascl_(uplo, &c__0, &c__0, &c_b17, &sigma, n, n, &a[a_offset], lda,
|
|
info, (ftnlen)1);
|
|
}
|
|
|
|
/* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
|
|
|
|
inde = 1;
|
|
indtau = inde + *n;
|
|
indwrk = indtau + *n;
|
|
llwork = *lwork - indwrk + 1;
|
|
dsytrd_(uplo, n, &a[a_offset], lda, &w[1], &work[inde], &work[indtau], &
|
|
work[indwrk], &llwork, &iinfo, (ftnlen)1);
|
|
|
|
/* For eigenvalues only, call DSTERF. For eigenvectors, first call */
|
|
/* DORGTR to generate the orthogonal matrix, then call DSTEQR. */
|
|
|
|
if (! wantz) {
|
|
dsterf_(n, &w[1], &work[inde], info);
|
|
} else {
|
|
dorgtr_(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], &
|
|
llwork, &iinfo, (ftnlen)1);
|
|
dsteqr_(jobz, n, &w[1], &work[inde], &a[a_offset], lda, &work[indtau],
|
|
info, (ftnlen)1);
|
|
}
|
|
|
|
/* If matrix was scaled, then rescale eigenvalues appropriately. */
|
|
|
|
if (iscale == 1) {
|
|
if (*info == 0) {
|
|
imax = *n;
|
|
} else {
|
|
imax = *info - 1;
|
|
}
|
|
d__1 = 1. / sigma;
|
|
dscal_(&imax, &d__1, &w[1], &c__1);
|
|
}
|
|
|
|
/* Set WORK(1) to optimal workspace size. */
|
|
|
|
work[1] = (doublereal) lwkopt;
|
|
|
|
return 0;
|
|
|
|
/* End of DSYEV */
|
|
|
|
} /* dsyev_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|