Files
lammps/lib/linalg/dsyev.cpp
Axel Kohlmeyer 1e8b2ad5a0 whitespace fixes
2022-12-28 13:48:43 -05:00

370 lines
11 KiB
C++

/* fortran/dsyev.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__0 = 0;
static doublereal c_b17 = 1.;
/* > \brief <b> DSYEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matr
ices</b> */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DSYEV + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyev.f
"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyev.f
"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyev.f
"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER JOBZ, UPLO */
/* INTEGER INFO, LDA, LWORK, N */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DSYEV computes all eigenvalues and, optionally, eigenvectors of a */
/* > real symmetric matrix A. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] JOBZ */
/* > \verbatim */
/* > JOBZ is CHARACTER*1 */
/* > = 'N': Compute eigenvalues only; */
/* > = 'V': Compute eigenvalues and eigenvectors. */
/* > \endverbatim */
/* > */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': Upper triangle of A is stored; */
/* > = 'L': Lower triangle of A is stored. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA, N) */
/* > On entry, the symmetric matrix A. If UPLO = 'U', the */
/* > leading N-by-N upper triangular part of A contains the */
/* > upper triangular part of the matrix A. If UPLO = 'L', */
/* > the leading N-by-N lower triangular part of A contains */
/* > the lower triangular part of the matrix A. */
/* > On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
/* > orthonormal eigenvectors of the matrix A. */
/* > If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */
/* > or the upper triangle (if UPLO='U') of A, including the */
/* > diagonal, is destroyed. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] W */
/* > \verbatim */
/* > W is DOUBLE PRECISION array, dimension (N) */
/* > If INFO = 0, the eigenvalues in ascending order. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The length of the array WORK. LWORK >= max(1,3*N-1). */
/* > For optimal efficiency, LWORK >= (NB+2)*N, */
/* > where NB is the blocksize for DSYTRD returned by ILAENV. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, the algorithm failed to converge; i */
/* > off-diagonal elements of an intermediate tridiagonal */
/* > form did not converge to zero. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doubleSYeigen */
/* ===================================================================== */
/* Subroutine */ int dsyev_(char *jobz, char *uplo, integer *n, doublereal *a,
integer *lda, doublereal *w, doublereal *work, integer *lwork,
integer *info, ftnlen jobz_len, ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
doublereal d__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer nb;
doublereal eps;
integer inde;
doublereal anrm;
integer imax;
doublereal rmin, rmax;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
doublereal sigma;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer iinfo;
logical lower, wantz;
extern doublereal dlamch_(char *, ftnlen);
integer iscale;
extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, integer *, doublereal *,
integer *, integer *, ftnlen);
doublereal safmin;
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
doublereal bignum;
integer indtau;
extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
integer *);
extern doublereal dlansy_(char *, char *, integer *, doublereal *,
integer *, doublereal *, ftnlen, ftnlen);
integer indwrk;
extern /* Subroutine */ int dorgtr_(char *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, integer *,
ftnlen), dsteqr_(char *, integer *, doublereal *, doublereal *,
doublereal *, integer *, doublereal *, integer *, ftnlen),
dsytrd_(char *, integer *, doublereal *, integer *, doublereal *,
doublereal *, doublereal *, doublereal *, integer *, integer *,
ftnlen);
integer llwork;
doublereal smlnum;
integer lwkopt;
logical lquery;
/* -- LAPACK driver routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--w;
--work;
/* Function Body */
wantz = lsame_(jobz, (char *)"V", (ftnlen)1, (ftnlen)1);
lower = lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1);
lquery = *lwork == -1;
*info = 0;
if (! (wantz || lsame_(jobz, (char *)"N", (ftnlen)1, (ftnlen)1))) {
*info = -1;
} else if (! (lower || lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1))) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
}
if (*info == 0) {
nb = ilaenv_(&c__1, (char *)"DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
(ftnlen)1);
/* Computing MAX */
i__1 = 1, i__2 = (nb + 2) * *n;
lwkopt = max(i__1,i__2);
work[1] = (doublereal) lwkopt;
/* Computing MAX */
i__1 = 1, i__2 = *n * 3 - 1;
if (*lwork < max(i__1,i__2) && ! lquery) {
*info = -8;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DSYEV ", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*n == 1) {
w[1] = a[a_dim1 + 1];
work[1] = 2.;
if (wantz) {
a[a_dim1 + 1] = 1.;
}
return 0;
}
/* Get machine constants. */
safmin = dlamch_((char *)"Safe minimum", (ftnlen)12);
eps = dlamch_((char *)"Precision", (ftnlen)9);
smlnum = safmin / eps;
bignum = 1. / smlnum;
rmin = sqrt(smlnum);
rmax = sqrt(bignum);
/* Scale matrix to allowable range, if necessary. */
anrm = dlansy_((char *)"M", uplo, n, &a[a_offset], lda, &work[1], (ftnlen)1, (
ftnlen)1);
iscale = 0;
if (anrm > 0. && anrm < rmin) {
iscale = 1;
sigma = rmin / anrm;
} else if (anrm > rmax) {
iscale = 1;
sigma = rmax / anrm;
}
if (iscale == 1) {
dlascl_(uplo, &c__0, &c__0, &c_b17, &sigma, n, n, &a[a_offset], lda,
info, (ftnlen)1);
}
/* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
inde = 1;
indtau = inde + *n;
indwrk = indtau + *n;
llwork = *lwork - indwrk + 1;
dsytrd_(uplo, n, &a[a_offset], lda, &w[1], &work[inde], &work[indtau], &
work[indwrk], &llwork, &iinfo, (ftnlen)1);
/* For eigenvalues only, call DSTERF. For eigenvectors, first call */
/* DORGTR to generate the orthogonal matrix, then call DSTEQR. */
if (! wantz) {
dsterf_(n, &w[1], &work[inde], info);
} else {
dorgtr_(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], &
llwork, &iinfo, (ftnlen)1);
dsteqr_(jobz, n, &w[1], &work[inde], &a[a_offset], lda, &work[indtau],
info, (ftnlen)1);
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
if (iscale == 1) {
if (*info == 0) {
imax = *n;
} else {
imax = *info - 1;
}
d__1 = 1. / sigma;
dscal_(&imax, &d__1, &w[1], &c__1);
}
/* Set WORK(1) to optimal workspace size. */
work[1] = (doublereal) lwkopt;
return 0;
/* End of DSYEV */
} /* dsyev_ */
#ifdef __cplusplus
}
#endif