Files
lammps/lib/linalg/dsygvd.cpp
Axel Kohlmeyer 1e8b2ad5a0 whitespace fixes
2022-12-28 13:48:43 -05:00

446 lines
15 KiB
C++

/* fortran/dsygvd.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static doublereal c_b11 = 1.;
/* > \brief \b DSYGVD */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DSYGVD + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygvd.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygvd.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygvd.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, */
/* LWORK, IWORK, LIWORK, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER JOBZ, UPLO */
/* INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N */
/* .. */
/* .. Array Arguments .. */
/* INTEGER IWORK( * ) */
/* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DSYGVD computes all the eigenvalues, and optionally, the eigenvectors */
/* > of a real generalized symmetric-definite eigenproblem, of the form */
/* > A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and */
/* > B are assumed to be symmetric and B is also positive definite. */
/* > If eigenvectors are desired, it uses a divide and conquer algorithm. */
/* > */
/* > The divide and conquer algorithm makes very mild assumptions about */
/* > floating point arithmetic. It will work on machines with a guard */
/* > digit in add/subtract, or on those binary machines without guard */
/* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
/* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
/* > without guard digits, but we know of none. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] ITYPE */
/* > \verbatim */
/* > ITYPE is INTEGER */
/* > Specifies the problem type to be solved: */
/* > = 1: A*x = (lambda)*B*x */
/* > = 2: A*B*x = (lambda)*x */
/* > = 3: B*A*x = (lambda)*x */
/* > \endverbatim */
/* > */
/* > \param[in] JOBZ */
/* > \verbatim */
/* > JOBZ is CHARACTER*1 */
/* > = 'N': Compute eigenvalues only; */
/* > = 'V': Compute eigenvalues and eigenvectors. */
/* > \endverbatim */
/* > */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': Upper triangles of A and B are stored; */
/* > = 'L': Lower triangles of A and B are stored. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrices A and B. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA, N) */
/* > On entry, the symmetric matrix A. If UPLO = 'U', the */
/* > leading N-by-N upper triangular part of A contains the */
/* > upper triangular part of the matrix A. If UPLO = 'L', */
/* > the leading N-by-N lower triangular part of A contains */
/* > the lower triangular part of the matrix A. */
/* > */
/* > On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
/* > matrix Z of eigenvectors. The eigenvectors are normalized */
/* > as follows: */
/* > if ITYPE = 1 or 2, Z**T*B*Z = I; */
/* > if ITYPE = 3, Z**T*inv(B)*Z = I. */
/* > If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') */
/* > or the lower triangle (if UPLO='L') of A, including the */
/* > diagonal, is destroyed. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is DOUBLE PRECISION array, dimension (LDB, N) */
/* > On entry, the symmetric matrix B. If UPLO = 'U', the */
/* > leading N-by-N upper triangular part of B contains the */
/* > upper triangular part of the matrix B. If UPLO = 'L', */
/* > the leading N-by-N lower triangular part of B contains */
/* > the lower triangular part of the matrix B. */
/* > */
/* > On exit, if INFO <= N, the part of B containing the matrix is */
/* > overwritten by the triangular factor U or L from the Cholesky */
/* > factorization B = U**T*U or B = L*L**T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] W */
/* > \verbatim */
/* > W is DOUBLE PRECISION array, dimension (N) */
/* > If INFO = 0, the eigenvalues in ascending order. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > If N <= 1, LWORK >= 1. */
/* > If JOBZ = 'N' and N > 1, LWORK >= 2*N+1. */
/* > If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal sizes of the WORK and IWORK */
/* > arrays, returns these values as the first entries of the WORK */
/* > and IWORK arrays, and no error message related to LWORK or */
/* > LIWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] IWORK */
/* > \verbatim */
/* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
/* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LIWORK */
/* > \verbatim */
/* > LIWORK is INTEGER */
/* > The dimension of the array IWORK. */
/* > If N <= 1, LIWORK >= 1. */
/* > If JOBZ = 'N' and N > 1, LIWORK >= 1. */
/* > If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. */
/* > */
/* > If LIWORK = -1, then a workspace query is assumed; the */
/* > routine only calculates the optimal sizes of the WORK and */
/* > IWORK arrays, returns these values as the first entries of */
/* > the WORK and IWORK arrays, and no error message related to */
/* > LWORK or LIWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: DPOTRF or DSYEVD returned an error code: */
/* > <= N: if INFO = i and JOBZ = 'N', then the algorithm */
/* > failed to converge; i off-diagonal elements of an */
/* > intermediate tridiagonal form did not converge to */
/* > zero; */
/* > if INFO = i and JOBZ = 'V', then the algorithm */
/* > failed to compute an eigenvalue while working on */
/* > the submatrix lying in rows and columns INFO/(N+1) */
/* > through mod(INFO,N+1); */
/* > > N: if INFO = N + i, for 1 <= i <= N, then the leading */
/* > minor of order i of B is not positive definite. */
/* > The factorization of B could not be completed and */
/* > no eigenvalues or eigenvectors were computed. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doubleSYeigen */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > Modified so that no backsubstitution is performed if DSYEVD fails to */
/* > converge (NEIG in old code could be greater than N causing out of */
/* > bounds reference to A - reported by Ralf Meyer). Also corrected the */
/* > description of INFO and the test on ITYPE. Sven, 16 Feb 05. */
/* > \endverbatim */
/* > \par Contributors: */
/* ================== */
/* > */
/* > Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
/* > */
/* ===================================================================== */
/* Subroutine */ int dsygvd_(integer *itype, char *jobz, char *uplo, integer *
n, doublereal *a, integer *lda, doublereal *b, integer *ldb,
doublereal *w, doublereal *work, integer *lwork, integer *iwork,
integer *liwork, integer *info, ftnlen jobz_len, ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1;
doublereal d__1, d__2;
/* Local variables */
integer lopt;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *,
integer *, integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen);
integer lwmin;
char trans[1];
integer liopt;
extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
integer *, integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen);
logical upper, wantz;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), dpotrf_(
char *, integer *, doublereal *, integer *, integer *, ftnlen);
integer liwmin;
extern /* Subroutine */ int dsyevd_(char *, char *, integer *, doublereal
*, integer *, doublereal *, doublereal *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen), dsygst_(integer *, char *,
integer *, doublereal *, integer *, doublereal *, integer *,
integer *, ftnlen);
logical lquery;
/* -- LAPACK driver routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
--w;
--work;
--iwork;
/* Function Body */
wantz = lsame_(jobz, (char *)"V", (ftnlen)1, (ftnlen)1);
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
lquery = *lwork == -1 || *liwork == -1;
*info = 0;
if (*n <= 1) {
liwmin = 1;
lwmin = 1;
} else if (wantz) {
liwmin = *n * 5 + 3;
/* Computing 2nd power */
i__1 = *n;
lwmin = *n * 6 + 1 + (i__1 * i__1 << 1);
} else {
liwmin = 1;
lwmin = (*n << 1) + 1;
}
lopt = lwmin;
liopt = liwmin;
if (*itype < 1 || *itype > 3) {
*info = -1;
} else if (! (wantz || lsame_(jobz, (char *)"N", (ftnlen)1, (ftnlen)1))) {
*info = -2;
} else if (! (upper || lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1))) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*lda < max(1,*n)) {
*info = -6;
} else if (*ldb < max(1,*n)) {
*info = -8;
}
if (*info == 0) {
work[1] = (doublereal) lopt;
iwork[1] = liopt;
if (*lwork < lwmin && ! lquery) {
*info = -11;
} else if (*liwork < liwmin && ! lquery) {
*info = -13;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DSYGVD", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Form a Cholesky factorization of B. */
dpotrf_(uplo, n, &b[b_offset], ldb, info, (ftnlen)1);
if (*info != 0) {
*info = *n + *info;
return 0;
}
/* Transform problem to standard eigenvalue problem and solve. */
dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info, (
ftnlen)1);
dsyevd_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, &iwork[
1], liwork, info, (ftnlen)1, (ftnlen)1);
/* Computing MAX */
d__1 = (doublereal) lopt;
lopt = (integer) max(d__1,work[1]);
/* Computing MAX */
d__1 = (doublereal) liopt, d__2 = (doublereal) iwork[1];
liopt = (integer) max(d__1,d__2);
if (wantz && *info == 0) {
/* Backtransform eigenvectors to the original problem. */
if (*itype == 1 || *itype == 2) {
/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
/* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y */
if (upper) {
*(unsigned char *)trans = 'N';
} else {
*(unsigned char *)trans = 'T';
}
dtrsm_((char *)"Left", uplo, trans, (char *)"Non-unit", n, n, &c_b11, &b[b_offset]
, ldb, &a[a_offset], lda, (ftnlen)4, (ftnlen)1, (ftnlen)1,
(ftnlen)8);
} else if (*itype == 3) {
/* For B*A*x=(lambda)*x; */
/* backtransform eigenvectors: x = L*y or U**T*y */
if (upper) {
*(unsigned char *)trans = 'T';
} else {
*(unsigned char *)trans = 'N';
}
dtrmm_((char *)"Left", uplo, trans, (char *)"Non-unit", n, n, &c_b11, &b[b_offset]
, ldb, &a[a_offset], lda, (ftnlen)4, (ftnlen)1, (ftnlen)1,
(ftnlen)8);
}
}
work[1] = (doublereal) lopt;
iwork[1] = liopt;
return 0;
/* End of DSYGVD */
} /* dsygvd_ */
#ifdef __cplusplus
}
#endif