Files
lammps/lib/linalg/dsyrk.cpp
Axel Kohlmeyer 1e8b2ad5a0 whitespace fixes
2022-12-28 13:48:43 -05:00

446 lines
14 KiB
C++

/* fortran/dsyrk.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* > \brief \b DSYRK */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* SUBROUTINE DSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) */
/* .. Scalar Arguments .. */
/* DOUBLE PRECISION ALPHA,BETA */
/* INTEGER K,LDA,LDC,N */
/* CHARACTER TRANS,UPLO */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A(LDA,*),C(LDC,*) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DSYRK performs one of the symmetric rank k operations */
/* > */
/* > C := alpha*A*A**T + beta*C, */
/* > */
/* > or */
/* > */
/* > C := alpha*A**T*A + beta*C, */
/* > */
/* > where alpha and beta are scalars, C is an n by n symmetric matrix */
/* > and A is an n by k matrix in the first case and a k by n matrix */
/* > in the second case. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > On entry, UPLO specifies whether the upper or lower */
/* > triangular part of the array C is to be referenced as */
/* > follows: */
/* > */
/* > UPLO = 'U' or 'u' Only the upper triangular part of C */
/* > is to be referenced. */
/* > */
/* > UPLO = 'L' or 'l' Only the lower triangular part of C */
/* > is to be referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > On entry, TRANS specifies the operation to be performed as */
/* > follows: */
/* > */
/* > TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C. */
/* > */
/* > TRANS = 'T' or 't' C := alpha*A**T*A + beta*C. */
/* > */
/* > TRANS = 'C' or 'c' C := alpha*A**T*A + beta*C. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > On entry, N specifies the order of the matrix C. N must be */
/* > at least zero. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > On entry with TRANS = 'N' or 'n', K specifies the number */
/* > of columns of the matrix A, and on entry with */
/* > TRANS = 'T' or 't' or 'C' or 'c', K specifies the number */
/* > of rows of the matrix A. K must be at least zero. */
/* > \endverbatim */
/* > */
/* > \param[in] ALPHA */
/* > \verbatim */
/* > ALPHA is DOUBLE PRECISION. */
/* > On entry, ALPHA specifies the scalar alpha. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is */
/* > k when TRANS = 'N' or 'n', and is n otherwise. */
/* > Before entry with TRANS = 'N' or 'n', the leading n by k */
/* > part of the array A must contain the matrix A, otherwise */
/* > the leading k by n part of the array A must contain the */
/* > matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > On entry, LDA specifies the first dimension of A as declared */
/* > in the calling (sub) program. When TRANS = 'N' or 'n' */
/* > then LDA must be at least max( 1, n ), otherwise LDA must */
/* > be at least max( 1, k ). */
/* > \endverbatim */
/* > */
/* > \param[in] BETA */
/* > \verbatim */
/* > BETA is DOUBLE PRECISION. */
/* > On entry, BETA specifies the scalar beta. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C */
/* > \verbatim */
/* > C is DOUBLE PRECISION array, dimension ( LDC, N ) */
/* > Before entry with UPLO = 'U' or 'u', the leading n by n */
/* > upper triangular part of the array C must contain the upper */
/* > triangular part of the symmetric matrix and the strictly */
/* > lower triangular part of C is not referenced. On exit, the */
/* > upper triangular part of the array C is overwritten by the */
/* > upper triangular part of the updated matrix. */
/* > Before entry with UPLO = 'L' or 'l', the leading n by n */
/* > lower triangular part of the array C must contain the lower */
/* > triangular part of the symmetric matrix and the strictly */
/* > upper triangular part of C is not referenced. On exit, the */
/* > lower triangular part of the array C is overwritten by the */
/* > lower triangular part of the updated matrix. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > On entry, LDC specifies the first dimension of C as declared */
/* > in the calling (sub) program. LDC must be at least */
/* > max( 1, n ). */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup double_blas_level3 */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > Level 3 Blas routine. */
/* > */
/* > -- Written on 8-February-1989. */
/* > Jack Dongarra, Argonne National Laboratory. */
/* > Iain Duff, AERE Harwell. */
/* > Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/* > Sven Hammarling, Numerical Algorithms Group Ltd. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int dsyrk_(char *uplo, char *trans, integer *n, integer *k,
doublereal *alpha, doublereal *a, integer *lda, doublereal *beta,
doublereal *c__, integer *ldc, ftnlen uplo_len, ftnlen trans_len)
{
/* System generated locals */
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;
/* Local variables */
integer i__, j, l, info;
doublereal temp;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer nrowa;
logical upper;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* -- Reference BLAS level3 routine -- */
/* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Parameters .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
/* Function Body */
if (lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1)) {
nrowa = *n;
} else {
nrowa = *k;
}
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
info = 0;
if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (! lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
(char *)"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, (char *)"C", (ftnlen)1, (
ftnlen)1)) {
info = 2;
} else if (*n < 0) {
info = 3;
} else if (*k < 0) {
info = 4;
} else if (*lda < max(1,nrowa)) {
info = 7;
} else if (*ldc < max(1,*n)) {
info = 10;
}
if (info != 0) {
xerbla_((char *)"DSYRK ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) {
return 0;
}
/* And when alpha.eq.zero. */
if (*alpha == 0.) {
if (upper) {
if (*beta == 0.) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] = 0.;
/* L10: */
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L30: */
}
/* L40: */
}
}
} else {
if (*beta == 0.) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] = 0.;
/* L50: */
}
/* L60: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L70: */
}
/* L80: */
}
}
}
return 0;
}
/* Start the operations. */
if (lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1)) {
/* Form C := alpha*A*A**T + beta*C. */
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (*beta == 0.) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] = 0.;
/* L90: */
}
} else if (*beta != 1.) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L100: */
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
if (a[j + l * a_dim1] != 0.) {
temp = *alpha * a[j + l * a_dim1];
i__3 = j;
for (i__ = 1; i__ <= i__3; ++i__) {
c__[i__ + j * c_dim1] += temp * a[i__ + l *
a_dim1];
/* L110: */
}
}
/* L120: */
}
/* L130: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (*beta == 0.) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] = 0.;
/* L140: */
}
} else if (*beta != 1.) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L150: */
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
if (a[j + l * a_dim1] != 0.) {
temp = *alpha * a[j + l * a_dim1];
i__3 = *n;
for (i__ = j; i__ <= i__3; ++i__) {
c__[i__ + j * c_dim1] += temp * a[i__ + l *
a_dim1];
/* L160: */
}
}
/* L170: */
}
/* L180: */
}
}
} else {
/* Form C := alpha*A**T*A + beta*C. */
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
/* L190: */
}
if (*beta == 0.) {
c__[i__ + j * c_dim1] = *alpha * temp;
} else {
c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
i__ + j * c_dim1];
}
/* L200: */
}
/* L210: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
temp = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
/* L220: */
}
if (*beta == 0.) {
c__[i__ + j * c_dim1] = *alpha * temp;
} else {
c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
i__ + j * c_dim1];
}
/* L230: */
}
/* L240: */
}
}
}
return 0;
/* End of DSYRK */
} /* dsyrk_ */
#ifdef __cplusplus
}
#endif