Files
lammps/lib/linalg/dtrmm.cpp
Axel Kohlmeyer 1e8b2ad5a0 whitespace fixes
2022-12-28 13:48:43 -05:00

528 lines
17 KiB
C++

/* fortran/dtrmm.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* > \brief \b DTRMM */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) */
/* .. Scalar Arguments .. */
/* DOUBLE PRECISION ALPHA */
/* INTEGER LDA,LDB,M,N */
/* CHARACTER DIAG,SIDE,TRANSA,UPLO */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A(LDA,*),B(LDB,*) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DTRMM performs one of the matrix-matrix operations */
/* > */
/* > B := alpha*op( A )*B, or B := alpha*B*op( A ), */
/* > */
/* > where alpha is a scalar, B is an m by n matrix, A is a unit, or */
/* > non-unit, upper or lower triangular matrix and op( A ) is one of */
/* > */
/* > op( A ) = A or op( A ) = A**T. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > On entry, SIDE specifies whether op( A ) multiplies B from */
/* > the left or right as follows: */
/* > */
/* > SIDE = 'L' or 'l' B := alpha*op( A )*B. */
/* > */
/* > SIDE = 'R' or 'r' B := alpha*B*op( A ). */
/* > \endverbatim */
/* > */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > On entry, UPLO specifies whether the matrix A is an upper or */
/* > lower triangular matrix as follows: */
/* > */
/* > UPLO = 'U' or 'u' A is an upper triangular matrix. */
/* > */
/* > UPLO = 'L' or 'l' A is a lower triangular matrix. */
/* > \endverbatim */
/* > */
/* > \param[in] TRANSA */
/* > \verbatim */
/* > TRANSA is CHARACTER*1 */
/* > On entry, TRANSA specifies the form of op( A ) to be used in */
/* > the matrix multiplication as follows: */
/* > */
/* > TRANSA = 'N' or 'n' op( A ) = A. */
/* > */
/* > TRANSA = 'T' or 't' op( A ) = A**T. */
/* > */
/* > TRANSA = 'C' or 'c' op( A ) = A**T. */
/* > \endverbatim */
/* > */
/* > \param[in] DIAG */
/* > \verbatim */
/* > DIAG is CHARACTER*1 */
/* > On entry, DIAG specifies whether or not A is unit triangular */
/* > as follows: */
/* > */
/* > DIAG = 'U' or 'u' A is assumed to be unit triangular. */
/* > */
/* > DIAG = 'N' or 'n' A is not assumed to be unit */
/* > triangular. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > On entry, M specifies the number of rows of B. M must be at */
/* > least zero. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > On entry, N specifies the number of columns of B. N must be */
/* > at least zero. */
/* > \endverbatim */
/* > */
/* > \param[in] ALPHA */
/* > \verbatim */
/* > ALPHA is DOUBLE PRECISION. */
/* > On entry, ALPHA specifies the scalar alpha. When alpha is */
/* > zero then A is not referenced and B need not be set before */
/* > entry. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension ( LDA, k ), where k is m */
/* > when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. */
/* > Before entry with UPLO = 'U' or 'u', the leading k by k */
/* > upper triangular part of the array A must contain the upper */
/* > triangular matrix and the strictly lower triangular part of */
/* > A is not referenced. */
/* > Before entry with UPLO = 'L' or 'l', the leading k by k */
/* > lower triangular part of the array A must contain the lower */
/* > triangular matrix and the strictly upper triangular part of */
/* > A is not referenced. */
/* > Note that when DIAG = 'U' or 'u', the diagonal elements of */
/* > A are not referenced either, but are assumed to be unity. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > On entry, LDA specifies the first dimension of A as declared */
/* > in the calling (sub) program. When SIDE = 'L' or 'l' then */
/* > LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' */
/* > then LDA must be at least max( 1, n ). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is DOUBLE PRECISION array, dimension ( LDB, N ) */
/* > Before entry, the leading m by n part of the array B must */
/* > contain the matrix B, and on exit is overwritten by the */
/* > transformed matrix. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > On entry, LDB specifies the first dimension of B as declared */
/* > in the calling (sub) program. LDB must be at least */
/* > max( 1, m ). */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup double_blas_level3 */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > Level 3 Blas routine. */
/* > */
/* > -- Written on 8-February-1989. */
/* > Jack Dongarra, Argonne National Laboratory. */
/* > Iain Duff, AERE Harwell. */
/* > Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/* > Sven Hammarling, Numerical Algorithms Group Ltd. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int dtrmm_(char *side, char *uplo, char *transa, char *diag,
integer *m, integer *n, doublereal *alpha, doublereal *a, integer *
lda, doublereal *b, integer *ldb, ftnlen side_len, ftnlen uplo_len,
ftnlen transa_len, ftnlen diag_len)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
/* Local variables */
integer i__, j, k, info;
doublereal temp;
logical lside;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer nrowa;
logical upper;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical nounit;
/* -- Reference BLAS level3 routine -- */
/* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Parameters .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
lside = lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1);
if (lside) {
nrowa = *m;
} else {
nrowa = *n;
}
nounit = lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1);
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
info = 0;
if (! lside && ! lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
info = 2;
} else if (! lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1) && ! lsame_(transa,
(char *)"T", (ftnlen)1, (ftnlen)1) && ! lsame_(transa, (char *)"C", (ftnlen)1, (
ftnlen)1)) {
info = 3;
} else if (! lsame_(diag, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
(char *)"N", (ftnlen)1, (ftnlen)1)) {
info = 4;
} else if (*m < 0) {
info = 5;
} else if (*n < 0) {
info = 6;
} else if (*lda < max(1,nrowa)) {
info = 9;
} else if (*ldb < max(1,*m)) {
info = 11;
}
if (info != 0) {
xerbla_((char *)"DTRMM ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*m == 0 || *n == 0) {
return 0;
}
/* And when alpha.eq.zero. */
if (*alpha == 0.) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] = 0.;
/* L10: */
}
/* L20: */
}
return 0;
}
/* Start the operations. */
if (lside) {
if (lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1)) {
/* Form B := alpha*A*B. */
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (k = 1; k <= i__2; ++k) {
if (b[k + j * b_dim1] != 0.) {
temp = *alpha * b[k + j * b_dim1];
i__3 = k - 1;
for (i__ = 1; i__ <= i__3; ++i__) {
b[i__ + j * b_dim1] += temp * a[i__ + k *
a_dim1];
/* L30: */
}
if (nounit) {
temp *= a[k + k * a_dim1];
}
b[k + j * b_dim1] = temp;
}
/* L40: */
}
/* L50: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
for (k = *m; k >= 1; --k) {
if (b[k + j * b_dim1] != 0.) {
temp = *alpha * b[k + j * b_dim1];
b[k + j * b_dim1] = temp;
if (nounit) {
b[k + j * b_dim1] *= a[k + k * a_dim1];
}
i__2 = *m;
for (i__ = k + 1; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] += temp * a[i__ + k *
a_dim1];
/* L60: */
}
}
/* L70: */
}
/* L80: */
}
}
} else {
/* Form B := alpha*A**T*B. */
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
for (i__ = *m; i__ >= 1; --i__) {
temp = b[i__ + j * b_dim1];
if (nounit) {
temp *= a[i__ + i__ * a_dim1];
}
i__2 = i__ - 1;
for (k = 1; k <= i__2; ++k) {
temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
/* L90: */
}
b[i__ + j * b_dim1] = *alpha * temp;
/* L100: */
}
/* L110: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = b[i__ + j * b_dim1];
if (nounit) {
temp *= a[i__ + i__ * a_dim1];
}
i__3 = *m;
for (k = i__ + 1; k <= i__3; ++k) {
temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
/* L120: */
}
b[i__ + j * b_dim1] = *alpha * temp;
/* L130: */
}
/* L140: */
}
}
}
} else {
if (lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1)) {
/* Form B := alpha*B*A. */
if (upper) {
for (j = *n; j >= 1; --j) {
temp = *alpha;
if (nounit) {
temp *= a[j + j * a_dim1];
}
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
/* L150: */
}
i__1 = j - 1;
for (k = 1; k <= i__1; ++k) {
if (a[k + j * a_dim1] != 0.) {
temp = *alpha * a[k + j * a_dim1];
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] += temp * b[i__ + k *
b_dim1];
/* L160: */
}
}
/* L170: */
}
/* L180: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp = *alpha;
if (nounit) {
temp *= a[j + j * a_dim1];
}
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
/* L190: */
}
i__2 = *n;
for (k = j + 1; k <= i__2; ++k) {
if (a[k + j * a_dim1] != 0.) {
temp = *alpha * a[k + j * a_dim1];
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
b[i__ + j * b_dim1] += temp * b[i__ + k *
b_dim1];
/* L200: */
}
}
/* L210: */
}
/* L220: */
}
}
} else {
/* Form B := alpha*B*A**T. */
if (upper) {
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
i__2 = k - 1;
for (j = 1; j <= i__2; ++j) {
if (a[j + k * a_dim1] != 0.) {
temp = *alpha * a[j + k * a_dim1];
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
b[i__ + j * b_dim1] += temp * b[i__ + k *
b_dim1];
/* L230: */
}
}
/* L240: */
}
temp = *alpha;
if (nounit) {
temp *= a[k + k * a_dim1];
}
if (temp != 1.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
/* L250: */
}
}
/* L260: */
}
} else {
for (k = *n; k >= 1; --k) {
i__1 = *n;
for (j = k + 1; j <= i__1; ++j) {
if (a[j + k * a_dim1] != 0.) {
temp = *alpha * a[j + k * a_dim1];
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] += temp * b[i__ + k *
b_dim1];
/* L270: */
}
}
/* L280: */
}
temp = *alpha;
if (nounit) {
temp *= a[k + k * a_dim1];
}
if (temp != 1.) {
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
/* L290: */
}
}
/* L300: */
}
}
}
}
return 0;
/* End of DTRMM */
} /* dtrmm_ */
#ifdef __cplusplus
}
#endif