Files
lammps/lib/linalg/dtrti2.cpp
Axel Kohlmeyer 1e8b2ad5a0 whitespace fixes
2022-12-28 13:48:43 -05:00

259 lines
7.7 KiB
C++

/* fortran/dtrti2.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static integer c__1 = 1;
/* > \brief \b DTRTI2 computes the inverse of a triangular matrix (unblocked algorithm). */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DTRTI2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrti2.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrti2.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrti2.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DTRTI2( UPLO, DIAG, N, A, LDA, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER DIAG, UPLO */
/* INTEGER INFO, LDA, N */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A( LDA, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DTRTI2 computes the inverse of a real upper or lower triangular */
/* > matrix. */
/* > */
/* > This is the Level 2 BLAS version of the algorithm. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > Specifies whether the matrix A is upper or lower triangular. */
/* > = 'U': Upper triangular */
/* > = 'L': Lower triangular */
/* > \endverbatim */
/* > */
/* > \param[in] DIAG */
/* > \verbatim */
/* > DIAG is CHARACTER*1 */
/* > Specifies whether or not the matrix A is unit triangular. */
/* > = 'N': Non-unit triangular */
/* > = 'U': Unit triangular */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the triangular matrix A. If UPLO = 'U', the */
/* > leading n by n upper triangular part of the array A contains */
/* > the upper triangular matrix, and the strictly lower */
/* > triangular part of A is not referenced. If UPLO = 'L', the */
/* > leading n by n lower triangular part of the array A contains */
/* > the lower triangular matrix, and the strictly upper */
/* > triangular part of A is not referenced. If DIAG = 'U', the */
/* > diagonal elements of A are also not referenced and are */
/* > assumed to be 1. */
/* > */
/* > On exit, the (triangular) inverse of the original matrix, in */
/* > the same storage format. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -k, the k-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doubleOTHERcomputational */
/* ===================================================================== */
/* Subroutine */ int dtrti2_(char *uplo, char *diag, integer *n, doublereal *
a, integer *lda, integer *info, ftnlen uplo_len, ftnlen diag_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
/* Local variables */
integer j;
doublereal ajj;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
extern logical lsame_(char *, char *, ftnlen, ftnlen);
logical upper;
extern /* Subroutine */ int dtrmv_(char *, char *, char *, integer *,
doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen,
ftnlen), xerbla_(char *, integer *, ftnlen);
logical nounit;
/* -- LAPACK computational routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
/* Function Body */
*info = 0;
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
nounit = lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1);
if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
*info = -1;
} else if (! nounit && ! lsame_(diag, (char *)"U", (ftnlen)1, (ftnlen)1)) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DTRTI2", &i__1, (ftnlen)6);
return 0;
}
if (upper) {
/* Compute inverse of upper triangular matrix. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (nounit) {
a[j + j * a_dim1] = 1. / a[j + j * a_dim1];
ajj = -a[j + j * a_dim1];
} else {
ajj = -1.;
}
/* Compute elements 1:j-1 of j-th column. */
i__2 = j - 1;
dtrmv_((char *)"Upper", (char *)"No transpose", diag, &i__2, &a[a_offset], lda, &
a[j * a_dim1 + 1], &c__1, (ftnlen)5, (ftnlen)12, (ftnlen)
1);
i__2 = j - 1;
dscal_(&i__2, &ajj, &a[j * a_dim1 + 1], &c__1);
/* L10: */
}
} else {
/* Compute inverse of lower triangular matrix. */
for (j = *n; j >= 1; --j) {
if (nounit) {
a[j + j * a_dim1] = 1. / a[j + j * a_dim1];
ajj = -a[j + j * a_dim1];
} else {
ajj = -1.;
}
if (j < *n) {
/* Compute elements j+1:n of j-th column. */
i__1 = *n - j;
dtrmv_((char *)"Lower", (char *)"No transpose", diag, &i__1, &a[j + 1 + (j +
1) * a_dim1], lda, &a[j + 1 + j * a_dim1], &c__1, (
ftnlen)5, (ftnlen)12, (ftnlen)1);
i__1 = *n - j;
dscal_(&i__1, &ajj, &a[j + 1 + j * a_dim1], &c__1);
}
/* L20: */
}
}
return 0;
/* End of DTRTI2 */
} /* dtrti2_ */
#ifdef __cplusplus
}
#endif