487 lines
16 KiB
C++
487 lines
16 KiB
C++
/* fortran/zheevd.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static integer c__0 = 0;
|
|
static doublereal c_b18 = 1.;
|
|
|
|
/* > \brief <b> ZHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE mat
|
|
rices</b> */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download ZHEEVD + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevd.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevd.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevd.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, */
|
|
/* LRWORK, IWORK, LIWORK, INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* CHARACTER JOBZ, UPLO */
|
|
/* INTEGER INFO, LDA, LIWORK, LRWORK, LWORK, N */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* INTEGER IWORK( * ) */
|
|
/* DOUBLE PRECISION RWORK( * ), W( * ) */
|
|
/* COMPLEX*16 A( LDA, * ), WORK( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a */
|
|
/* > complex Hermitian matrix A. If eigenvectors are desired, it uses a */
|
|
/* > divide and conquer algorithm. */
|
|
/* > */
|
|
/* > The divide and conquer algorithm makes very mild assumptions about */
|
|
/* > floating point arithmetic. It will work on machines with a guard */
|
|
/* > digit in add/subtract, or on those binary machines without guard */
|
|
/* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
|
|
/* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
|
|
/* > without guard digits, but we know of none. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] JOBZ */
|
|
/* > \verbatim */
|
|
/* > JOBZ is CHARACTER*1 */
|
|
/* > = 'N': Compute eigenvalues only; */
|
|
/* > = 'V': Compute eigenvalues and eigenvectors. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > = 'U': Upper triangle of A is stored; */
|
|
/* > = 'L': Lower triangle of A is stored. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX*16 array, dimension (LDA, N) */
|
|
/* > On entry, the Hermitian matrix A. If UPLO = 'U', the */
|
|
/* > leading N-by-N upper triangular part of A contains the */
|
|
/* > upper triangular part of the matrix A. If UPLO = 'L', */
|
|
/* > the leading N-by-N lower triangular part of A contains */
|
|
/* > the lower triangular part of the matrix A. */
|
|
/* > On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
|
|
/* > orthonormal eigenvectors of the matrix A. */
|
|
/* > If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */
|
|
/* > or the upper triangle (if UPLO='U') of A, including the */
|
|
/* > diagonal, is destroyed. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= max(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] W */
|
|
/* > \verbatim */
|
|
/* > W is DOUBLE PRECISION array, dimension (N) */
|
|
/* > If INFO = 0, the eigenvalues in ascending order. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
|
|
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LWORK */
|
|
/* > \verbatim */
|
|
/* > LWORK is INTEGER */
|
|
/* > The length of the array WORK. */
|
|
/* > If N <= 1, LWORK must be at least 1. */
|
|
/* > If JOBZ = 'N' and N > 1, LWORK must be at least N + 1. */
|
|
/* > If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2. */
|
|
/* > */
|
|
/* > If LWORK = -1, then a workspace query is assumed; the routine */
|
|
/* > only calculates the optimal sizes of the WORK, RWORK and */
|
|
/* > IWORK arrays, returns these values as the first entries of */
|
|
/* > the WORK, RWORK and IWORK arrays, and no error message */
|
|
/* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] RWORK */
|
|
/* > \verbatim */
|
|
/* > RWORK is DOUBLE PRECISION array, */
|
|
/* > dimension (LRWORK) */
|
|
/* > On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LRWORK */
|
|
/* > \verbatim */
|
|
/* > LRWORK is INTEGER */
|
|
/* > The dimension of the array RWORK. */
|
|
/* > If N <= 1, LRWORK must be at least 1. */
|
|
/* > If JOBZ = 'N' and N > 1, LRWORK must be at least N. */
|
|
/* > If JOBZ = 'V' and N > 1, LRWORK must be at least */
|
|
/* > 1 + 5*N + 2*N**2. */
|
|
/* > */
|
|
/* > If LRWORK = -1, then a workspace query is assumed; the */
|
|
/* > routine only calculates the optimal sizes of the WORK, RWORK */
|
|
/* > and IWORK arrays, returns these values as the first entries */
|
|
/* > of the WORK, RWORK and IWORK arrays, and no error message */
|
|
/* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] IWORK */
|
|
/* > \verbatim */
|
|
/* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
|
|
/* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LIWORK */
|
|
/* > \verbatim */
|
|
/* > LIWORK is INTEGER */
|
|
/* > The dimension of the array IWORK. */
|
|
/* > If N <= 1, LIWORK must be at least 1. */
|
|
/* > If JOBZ = 'N' and N > 1, LIWORK must be at least 1. */
|
|
/* > If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */
|
|
/* > */
|
|
/* > If LIWORK = -1, then a workspace query is assumed; the */
|
|
/* > routine only calculates the optimal sizes of the WORK, RWORK */
|
|
/* > and IWORK arrays, returns these values as the first entries */
|
|
/* > of the WORK, RWORK and IWORK arrays, and no error message */
|
|
/* > related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > > 0: if INFO = i and JOBZ = 'N', then the algorithm failed */
|
|
/* > to converge; i off-diagonal elements of an intermediate */
|
|
/* > tridiagonal form did not converge to zero; */
|
|
/* > if INFO = i and JOBZ = 'V', then the algorithm failed */
|
|
/* > to compute an eigenvalue while working on the submatrix */
|
|
/* > lying in rows and columns INFO/(N+1) through */
|
|
/* > mod(INFO,N+1). */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup complex16HEeigen */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > Modified description of INFO. Sven, 16 Feb 05. */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Jeff Rutter, Computer Science Division, University of California */
|
|
/* > at Berkeley, USA */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int zheevd_(char *jobz, char *uplo, integer *n,
|
|
doublecomplex *a, integer *lda, doublereal *w, doublecomplex *work,
|
|
integer *lwork, doublereal *rwork, integer *lrwork, integer *iwork,
|
|
integer *liwork, integer *info, ftnlen jobz_len, ftnlen uplo_len)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2;
|
|
doublereal d__1;
|
|
|
|
/* Builtin functions */
|
|
double sqrt(doublereal);
|
|
|
|
/* Local variables */
|
|
doublereal eps;
|
|
integer inde;
|
|
doublereal anrm;
|
|
integer imax;
|
|
doublereal rmin, rmax;
|
|
integer lopt;
|
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
|
integer *);
|
|
doublereal sigma;
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
integer iinfo, lwmin, liopt;
|
|
logical lower;
|
|
integer llrwk, lropt;
|
|
logical wantz;
|
|
integer indwk2, llwrk2;
|
|
extern doublereal dlamch_(char *, ftnlen);
|
|
integer iscale;
|
|
doublereal safmin;
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
doublereal bignum;
|
|
extern doublereal zlanhe_(char *, char *, integer *, doublecomplex *,
|
|
integer *, doublereal *, ftnlen, ftnlen);
|
|
integer indtau;
|
|
extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
|
|
integer *), zlascl_(char *, integer *, integer *, doublereal *,
|
|
doublereal *, integer *, integer *, doublecomplex *, integer *,
|
|
integer *, ftnlen), zstedc_(char *, integer *, doublereal *,
|
|
doublereal *, doublecomplex *, integer *, doublecomplex *,
|
|
integer *, doublereal *, integer *, integer *, integer *, integer
|
|
*, ftnlen);
|
|
integer indrwk, indwrk, liwmin;
|
|
extern /* Subroutine */ int zhetrd_(char *, integer *, doublecomplex *,
|
|
integer *, doublereal *, doublereal *, doublecomplex *,
|
|
doublecomplex *, integer *, integer *, ftnlen), zlacpy_(char *,
|
|
integer *, integer *, doublecomplex *, integer *, doublecomplex *,
|
|
integer *, ftnlen);
|
|
integer lrwmin, llwork;
|
|
doublereal smlnum;
|
|
logical lquery;
|
|
extern /* Subroutine */ int zunmtr_(char *, char *, char *, integer *,
|
|
integer *, doublecomplex *, integer *, doublecomplex *,
|
|
doublecomplex *, integer *, doublecomplex *, integer *, integer *,
|
|
ftnlen, ftnlen, ftnlen);
|
|
|
|
|
|
/* -- LAPACK driver routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--w;
|
|
--work;
|
|
--rwork;
|
|
--iwork;
|
|
|
|
/* Function Body */
|
|
wantz = lsame_(jobz, (char *)"V", (ftnlen)1, (ftnlen)1);
|
|
lower = lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1);
|
|
lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
|
|
|
|
*info = 0;
|
|
if (! (wantz || lsame_(jobz, (char *)"N", (ftnlen)1, (ftnlen)1))) {
|
|
*info = -1;
|
|
} else if (! (lower || lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1))) {
|
|
*info = -2;
|
|
} else if (*n < 0) {
|
|
*info = -3;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -5;
|
|
}
|
|
|
|
if (*info == 0) {
|
|
if (*n <= 1) {
|
|
lwmin = 1;
|
|
lrwmin = 1;
|
|
liwmin = 1;
|
|
lopt = lwmin;
|
|
lropt = lrwmin;
|
|
liopt = liwmin;
|
|
} else {
|
|
if (wantz) {
|
|
lwmin = (*n << 1) + *n * *n;
|
|
/* Computing 2nd power */
|
|
i__1 = *n;
|
|
lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
|
|
liwmin = *n * 5 + 3;
|
|
} else {
|
|
lwmin = *n + 1;
|
|
lrwmin = *n;
|
|
liwmin = 1;
|
|
}
|
|
/* Computing MAX */
|
|
i__1 = lwmin, i__2 = *n + *n * ilaenv_(&c__1, (char *)"ZHETRD", uplo, n, &
|
|
c_n1, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
|
|
lopt = max(i__1,i__2);
|
|
lropt = lrwmin;
|
|
liopt = liwmin;
|
|
}
|
|
work[1].r = (doublereal) lopt, work[1].i = 0.;
|
|
rwork[1] = (doublereal) lropt;
|
|
iwork[1] = liopt;
|
|
|
|
if (*lwork < lwmin && ! lquery) {
|
|
*info = -8;
|
|
} else if (*lrwork < lrwmin && ! lquery) {
|
|
*info = -10;
|
|
} else if (*liwork < liwmin && ! lquery) {
|
|
*info = -12;
|
|
}
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"ZHEEVD", &i__1, (ftnlen)6);
|
|
return 0;
|
|
} else if (lquery) {
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (*n == 1) {
|
|
i__1 = a_dim1 + 1;
|
|
w[1] = a[i__1].r;
|
|
if (wantz) {
|
|
i__1 = a_dim1 + 1;
|
|
a[i__1].r = 1., a[i__1].i = 0.;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Get machine constants. */
|
|
|
|
safmin = dlamch_((char *)"Safe minimum", (ftnlen)12);
|
|
eps = dlamch_((char *)"Precision", (ftnlen)9);
|
|
smlnum = safmin / eps;
|
|
bignum = 1. / smlnum;
|
|
rmin = sqrt(smlnum);
|
|
rmax = sqrt(bignum);
|
|
|
|
/* Scale matrix to allowable range, if necessary. */
|
|
|
|
anrm = zlanhe_((char *)"M", uplo, n, &a[a_offset], lda, &rwork[1], (ftnlen)1, (
|
|
ftnlen)1);
|
|
iscale = 0;
|
|
if (anrm > 0. && anrm < rmin) {
|
|
iscale = 1;
|
|
sigma = rmin / anrm;
|
|
} else if (anrm > rmax) {
|
|
iscale = 1;
|
|
sigma = rmax / anrm;
|
|
}
|
|
if (iscale == 1) {
|
|
zlascl_(uplo, &c__0, &c__0, &c_b18, &sigma, n, n, &a[a_offset], lda,
|
|
info, (ftnlen)1);
|
|
}
|
|
|
|
/* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */
|
|
|
|
inde = 1;
|
|
indtau = 1;
|
|
indwrk = indtau + *n;
|
|
indrwk = inde + *n;
|
|
indwk2 = indwrk + *n * *n;
|
|
llwork = *lwork - indwrk + 1;
|
|
llwrk2 = *lwork - indwk2 + 1;
|
|
llrwk = *lrwork - indrwk + 1;
|
|
zhetrd_(uplo, n, &a[a_offset], lda, &w[1], &rwork[inde], &work[indtau], &
|
|
work[indwrk], &llwork, &iinfo, (ftnlen)1);
|
|
|
|
/* For eigenvalues only, call DSTERF. For eigenvectors, first call */
|
|
/* ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the */
|
|
/* tridiagonal matrix, then call ZUNMTR to multiply it to the */
|
|
/* Householder transformations represented as Householder vectors in */
|
|
/* A. */
|
|
|
|
if (! wantz) {
|
|
dsterf_(n, &w[1], &rwork[inde], info);
|
|
} else {
|
|
zstedc_((char *)"I", n, &w[1], &rwork[inde], &work[indwrk], n, &work[indwk2],
|
|
&llwrk2, &rwork[indrwk], &llrwk, &iwork[1], liwork, info, (
|
|
ftnlen)1);
|
|
zunmtr_((char *)"L", uplo, (char *)"N", n, n, &a[a_offset], lda, &work[indtau], &work[
|
|
indwrk], n, &work[indwk2], &llwrk2, &iinfo, (ftnlen)1, (
|
|
ftnlen)1, (ftnlen)1);
|
|
zlacpy_((char *)"A", n, n, &work[indwrk], n, &a[a_offset], lda, (ftnlen)1);
|
|
}
|
|
|
|
/* If matrix was scaled, then rescale eigenvalues appropriately. */
|
|
|
|
if (iscale == 1) {
|
|
if (*info == 0) {
|
|
imax = *n;
|
|
} else {
|
|
imax = *info - 1;
|
|
}
|
|
d__1 = 1. / sigma;
|
|
dscal_(&imax, &d__1, &w[1], &c__1);
|
|
}
|
|
|
|
work[1].r = (doublereal) lopt, work[1].i = 0.;
|
|
rwork[1] = (doublereal) lropt;
|
|
iwork[1] = liopt;
|
|
|
|
return 0;
|
|
|
|
/* End of ZHEEVD */
|
|
|
|
} /* zheevd_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|