274 lines
7.8 KiB
C++
274 lines
7.8 KiB
C++
/* fortran/zungl2.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* > \brief \b ZUNGL2 generates all or part of the unitary matrix Q from an LQ factorization determined by cge
|
|
lqf (unblocked algorithm). */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download ZUNGL2 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zungl2.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zungl2.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zungl2.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE ZUNGL2( M, N, K, A, LDA, TAU, WORK, INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* INTEGER INFO, K, LDA, M, N */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZUNGL2 generates an m-by-n complex matrix Q with orthonormal rows, */
|
|
/* > which is defined as the first m rows of a product of k elementary */
|
|
/* > reflectors of order n */
|
|
/* > */
|
|
/* > Q = H(k)**H . . . H(2)**H H(1)**H */
|
|
/* > */
|
|
/* > as returned by ZGELQF. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > The number of rows of the matrix Q. M >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The number of columns of the matrix Q. N >= M. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] K */
|
|
/* > \verbatim */
|
|
/* > K is INTEGER */
|
|
/* > The number of elementary reflectors whose product defines the */
|
|
/* > matrix Q. M >= K >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX*16 array, dimension (LDA,N) */
|
|
/* > On entry, the i-th row must contain the vector which defines */
|
|
/* > the elementary reflector H(i), for i = 1,2,...,k, as returned */
|
|
/* > by ZGELQF in the first k rows of its array argument A. */
|
|
/* > On exit, the m by n matrix Q. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The first dimension of the array A. LDA >= max(1,M). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] TAU */
|
|
/* > \verbatim */
|
|
/* > TAU is COMPLEX*16 array, dimension (K) */
|
|
/* > TAU(i) must contain the scalar factor of the elementary */
|
|
/* > reflector H(i), as returned by ZGELQF. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is COMPLEX*16 array, dimension (M) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument has an illegal value */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup complex16OTHERcomputational */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int zungl2_(integer *m, integer *n, integer *k,
|
|
doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
|
|
work, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
|
doublecomplex z__1, z__2;
|
|
|
|
/* Builtin functions */
|
|
void d_cnjg(doublecomplex *, doublecomplex *);
|
|
|
|
/* Local variables */
|
|
integer i__, j, l;
|
|
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
|
|
doublecomplex *, integer *), zlarf_(char *, integer *, integer *,
|
|
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
|
|
integer *, doublecomplex *, ftnlen), xerbla_(char *, integer *,
|
|
ftnlen), zlacgv_(integer *, doublecomplex *, integer *);
|
|
|
|
|
|
/* -- LAPACK computational routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input arguments */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--tau;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
if (*m < 0) {
|
|
*info = -1;
|
|
} else if (*n < *m) {
|
|
*info = -2;
|
|
} else if (*k < 0 || *k > *m) {
|
|
*info = -3;
|
|
} else if (*lda < max(1,*m)) {
|
|
*info = -5;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"ZUNGL2", &i__1, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*m <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (*k < *m) {
|
|
|
|
/* Initialise rows k+1:m to rows of the unit matrix */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *m;
|
|
for (l = *k + 1; l <= i__2; ++l) {
|
|
i__3 = l + j * a_dim1;
|
|
a[i__3].r = 0., a[i__3].i = 0.;
|
|
/* L10: */
|
|
}
|
|
if (j > *k && j <= *m) {
|
|
i__2 = j + j * a_dim1;
|
|
a[i__2].r = 1., a[i__2].i = 0.;
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
|
|
for (i__ = *k; i__ >= 1; --i__) {
|
|
|
|
/* Apply H(i)**H to A(i:m,i:n) from the right */
|
|
|
|
if (i__ < *n) {
|
|
i__1 = *n - i__;
|
|
zlacgv_(&i__1, &a[i__ + (i__ + 1) * a_dim1], lda);
|
|
if (i__ < *m) {
|
|
i__1 = i__ + i__ * a_dim1;
|
|
a[i__1].r = 1., a[i__1].i = 0.;
|
|
i__1 = *m - i__;
|
|
i__2 = *n - i__ + 1;
|
|
d_cnjg(&z__1, &tau[i__]);
|
|
zlarf_((char *)"Right", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &
|
|
z__1, &a[i__ + 1 + i__ * a_dim1], lda, &work[1], (
|
|
ftnlen)5);
|
|
}
|
|
i__1 = *n - i__;
|
|
i__2 = i__;
|
|
z__1.r = -tau[i__2].r, z__1.i = -tau[i__2].i;
|
|
zscal_(&i__1, &z__1, &a[i__ + (i__ + 1) * a_dim1], lda);
|
|
i__1 = *n - i__;
|
|
zlacgv_(&i__1, &a[i__ + (i__ + 1) * a_dim1], lda);
|
|
}
|
|
i__1 = i__ + i__ * a_dim1;
|
|
d_cnjg(&z__2, &tau[i__]);
|
|
z__1.r = 1. - z__2.r, z__1.i = 0. - z__2.i;
|
|
a[i__1].r = z__1.r, a[i__1].i = z__1.i;
|
|
|
|
/* Set A(i,1:i-1) to zero */
|
|
|
|
i__1 = i__ - 1;
|
|
for (l = 1; l <= i__1; ++l) {
|
|
i__2 = i__ + l * a_dim1;
|
|
a[i__2].r = 0., a[i__2].i = 0.;
|
|
/* L30: */
|
|
}
|
|
/* L40: */
|
|
}
|
|
return 0;
|
|
|
|
/* End of ZUNGL2 */
|
|
|
|
} /* zungl2_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|