Files
lammps/lib/linalg/zungtr.cpp
Axel Kohlmeyer 1e8b2ad5a0 whitespace fixes
2022-12-28 13:48:43 -05:00

343 lines
10 KiB
C++

/* fortran/zungtr.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
/* > \brief \b ZUNGTR */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZUNGTR + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zungtr.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zungtr.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zungtr.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZUNGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER UPLO */
/* INTEGER INFO, LDA, LWORK, N */
/* .. */
/* .. Array Arguments .. */
/* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZUNGTR generates a complex unitary matrix Q which is defined as the */
/* > product of n-1 elementary reflectors of order N, as returned by */
/* > ZHETRD: */
/* > */
/* > if UPLO = 'U', Q = H(n-1) . . . H(2) H(1), */
/* > */
/* > if UPLO = 'L', Q = H(1) H(2) . . . H(n-1). */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': Upper triangle of A contains elementary reflectors */
/* > from ZHETRD; */
/* > = 'L': Lower triangle of A contains elementary reflectors */
/* > from ZHETRD. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix Q. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension (LDA,N) */
/* > On entry, the vectors which define the elementary reflectors, */
/* > as returned by ZHETRD. */
/* > On exit, the N-by-N unitary matrix Q. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= N. */
/* > \endverbatim */
/* > */
/* > \param[in] TAU */
/* > \verbatim */
/* > TAU is COMPLEX*16 array, dimension (N-1) */
/* > TAU(i) must contain the scalar factor of the elementary */
/* > reflector H(i), as returned by ZHETRD. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. LWORK >= N-1. */
/* > For optimum performance LWORK >= (N-1)*NB, where NB is */
/* > the optimal blocksize. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup complex16OTHERcomputational */
/* ===================================================================== */
/* Subroutine */ int zungtr_(char *uplo, integer *n, doublecomplex *a,
integer *lda, doublecomplex *tau, doublecomplex *work, integer *lwork,
integer *info, ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
/* Local variables */
integer i__, j, nb;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer iinfo;
logical upper;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
integer lwkopt;
logical lquery;
extern /* Subroutine */ int zungql_(integer *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, integer *), zungqr_(integer *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, integer *);
/* -- LAPACK computational routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
lquery = *lwork == -1;
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *n - 1;
if (*lwork < max(i__1,i__2) && ! lquery) {
*info = -7;
}
}
if (*info == 0) {
if (upper) {
i__1 = *n - 1;
i__2 = *n - 1;
i__3 = *n - 1;
nb = ilaenv_(&c__1, (char *)"ZUNGQL", (char *)" ", &i__1, &i__2, &i__3, &c_n1, (
ftnlen)6, (ftnlen)1);
} else {
i__1 = *n - 1;
i__2 = *n - 1;
i__3 = *n - 1;
nb = ilaenv_(&c__1, (char *)"ZUNGQR", (char *)" ", &i__1, &i__2, &i__3, &c_n1, (
ftnlen)6, (ftnlen)1);
}
/* Computing MAX */
i__1 = 1, i__2 = *n - 1;
lwkopt = max(i__1,i__2) * nb;
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"ZUNGTR", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
work[1].r = 1., work[1].i = 0.;
return 0;
}
if (upper) {
/* Q was determined by a call to ZHETRD with UPLO = 'U' */
/* Shift the vectors which define the elementary reflectors one */
/* column to the left, and set the last row and column of Q to */
/* those of the unit matrix */
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * a_dim1;
i__4 = i__ + (j + 1) * a_dim1;
a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
/* L10: */
}
i__2 = *n + j * a_dim1;
a[i__2].r = 0., a[i__2].i = 0.;
/* L20: */
}
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__ + *n * a_dim1;
a[i__2].r = 0., a[i__2].i = 0.;
/* L30: */
}
i__1 = *n + *n * a_dim1;
a[i__1].r = 1., a[i__1].i = 0.;
/* Generate Q(1:n-1,1:n-1) */
i__1 = *n - 1;
i__2 = *n - 1;
i__3 = *n - 1;
zungql_(&i__1, &i__2, &i__3, &a[a_offset], lda, &tau[1], &work[1],
lwork, &iinfo);
} else {
/* Q was determined by a call to ZHETRD with UPLO = 'L'. */
/* Shift the vectors which define the elementary reflectors one */
/* column to the right, and set the first row and column of Q to */
/* those of the unit matrix */
for (j = *n; j >= 2; --j) {
i__1 = j * a_dim1 + 1;
a[i__1].r = 0., a[i__1].i = 0.;
i__1 = *n;
for (i__ = j + 1; i__ <= i__1; ++i__) {
i__2 = i__ + j * a_dim1;
i__3 = i__ + (j - 1) * a_dim1;
a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i;
/* L40: */
}
/* L50: */
}
i__1 = a_dim1 + 1;
a[i__1].r = 1., a[i__1].i = 0.;
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
i__2 = i__ + a_dim1;
a[i__2].r = 0., a[i__2].i = 0.;
/* L60: */
}
if (*n > 1) {
/* Generate Q(2:n,2:n) */
i__1 = *n - 1;
i__2 = *n - 1;
i__3 = *n - 1;
zungqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[1],
&work[1], lwork, &iinfo);
}
}
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
return 0;
/* End of ZUNGTR */
} /* zungtr_ */
#ifdef __cplusplus
}
#endif