344 lines
9.6 KiB
C++
344 lines
9.6 KiB
C++
/* fortran/zunm2r.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief \b ZUNM2R multiplies a general matrix by the unitary matrix from a QR factorization determined by
|
|
cgeqrf (unblocked algorithm). */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download ZUNM2R + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunm2r.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunm2r.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunm2r.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE ZUNM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, */
|
|
/* WORK, INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* CHARACTER SIDE, TRANS */
|
|
/* INTEGER INFO, K, LDA, LDC, M, N */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZUNM2R overwrites the general complex m-by-n matrix C with */
|
|
/* > */
|
|
/* > Q * C if SIDE = 'L' and TRANS = 'N', or */
|
|
/* > */
|
|
/* > Q**H* C if SIDE = 'L' and TRANS = 'C', or */
|
|
/* > */
|
|
/* > C * Q if SIDE = 'R' and TRANS = 'N', or */
|
|
/* > */
|
|
/* > C * Q**H if SIDE = 'R' and TRANS = 'C', */
|
|
/* > */
|
|
/* > where Q is a complex unitary matrix defined as the product of k */
|
|
/* > elementary reflectors */
|
|
/* > */
|
|
/* > Q = H(1) H(2) . . . H(k) */
|
|
/* > */
|
|
/* > as returned by ZGEQRF. Q is of order m if SIDE = 'L' and of order n */
|
|
/* > if SIDE = 'R'. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] SIDE */
|
|
/* > \verbatim */
|
|
/* > SIDE is CHARACTER*1 */
|
|
/* > = 'L': apply Q or Q**H from the Left */
|
|
/* > = 'R': apply Q or Q**H from the Right */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] TRANS */
|
|
/* > \verbatim */
|
|
/* > TRANS is CHARACTER*1 */
|
|
/* > = 'N': apply Q (No transpose) */
|
|
/* > = 'C': apply Q**H (Conjugate transpose) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > The number of rows of the matrix C. M >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The number of columns of the matrix C. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] K */
|
|
/* > \verbatim */
|
|
/* > K is INTEGER */
|
|
/* > The number of elementary reflectors whose product defines */
|
|
/* > the matrix Q. */
|
|
/* > If SIDE = 'L', M >= K >= 0; */
|
|
/* > if SIDE = 'R', N >= K >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX*16 array, dimension (LDA,K) */
|
|
/* > The i-th column must contain the vector which defines the */
|
|
/* > elementary reflector H(i), for i = 1,2,...,k, as returned by */
|
|
/* > ZGEQRF in the first k columns of its array argument A. */
|
|
/* > A is modified by the routine but restored on exit. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. */
|
|
/* > If SIDE = 'L', LDA >= max(1,M); */
|
|
/* > if SIDE = 'R', LDA >= max(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] TAU */
|
|
/* > \verbatim */
|
|
/* > TAU is COMPLEX*16 array, dimension (K) */
|
|
/* > TAU(i) must contain the scalar factor of the elementary */
|
|
/* > reflector H(i), as returned by ZGEQRF. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] C */
|
|
/* > \verbatim */
|
|
/* > C is COMPLEX*16 array, dimension (LDC,N) */
|
|
/* > On entry, the m-by-n matrix C. */
|
|
/* > On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDC */
|
|
/* > \verbatim */
|
|
/* > LDC is INTEGER */
|
|
/* > The leading dimension of the array C. LDC >= max(1,M). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is COMPLEX*16 array, dimension */
|
|
/* > (N) if SIDE = 'L', */
|
|
/* > (M) if SIDE = 'R' */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup complex16OTHERcomputational */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int zunm2r_(char *side, char *trans, integer *m, integer *n,
|
|
integer *k, doublecomplex *a, integer *lda, doublecomplex *tau,
|
|
doublecomplex *c__, integer *ldc, doublecomplex *work, integer *info,
|
|
ftnlen side_len, ftnlen trans_len)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;
|
|
doublecomplex z__1;
|
|
|
|
/* Builtin functions */
|
|
void d_cnjg(doublecomplex *, doublecomplex *);
|
|
|
|
/* Local variables */
|
|
integer i__, i1, i2, i3, ic, jc, mi, ni, nq;
|
|
doublecomplex aii;
|
|
logical left;
|
|
doublecomplex taui;
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
extern /* Subroutine */ int zlarf_(char *, integer *, integer *,
|
|
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
|
|
integer *, doublecomplex *, ftnlen), xerbla_(char *, integer *,
|
|
ftnlen);
|
|
logical notran;
|
|
|
|
|
|
/* -- LAPACK computational routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input arguments */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--tau;
|
|
c_dim1 = *ldc;
|
|
c_offset = 1 + c_dim1;
|
|
c__ -= c_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
left = lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1);
|
|
notran = lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1);
|
|
|
|
/* NQ is the order of Q */
|
|
|
|
if (left) {
|
|
nq = *m;
|
|
} else {
|
|
nq = *n;
|
|
}
|
|
if (! left && ! lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) {
|
|
*info = -1;
|
|
} else if (! notran && ! lsame_(trans, (char *)"C", (ftnlen)1, (ftnlen)1)) {
|
|
*info = -2;
|
|
} else if (*m < 0) {
|
|
*info = -3;
|
|
} else if (*n < 0) {
|
|
*info = -4;
|
|
} else if (*k < 0 || *k > nq) {
|
|
*info = -5;
|
|
} else if (*lda < max(1,nq)) {
|
|
*info = -7;
|
|
} else if (*ldc < max(1,*m)) {
|
|
*info = -10;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"ZUNM2R", &i__1, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*m == 0 || *n == 0 || *k == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (left && ! notran || ! left && notran) {
|
|
i1 = 1;
|
|
i2 = *k;
|
|
i3 = 1;
|
|
} else {
|
|
i1 = *k;
|
|
i2 = 1;
|
|
i3 = -1;
|
|
}
|
|
|
|
if (left) {
|
|
ni = *n;
|
|
jc = 1;
|
|
} else {
|
|
mi = *m;
|
|
ic = 1;
|
|
}
|
|
|
|
i__1 = i2;
|
|
i__2 = i3;
|
|
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
|
|
if (left) {
|
|
|
|
/* H(i) or H(i)**H is applied to C(i:m,1:n) */
|
|
|
|
mi = *m - i__ + 1;
|
|
ic = i__;
|
|
} else {
|
|
|
|
/* H(i) or H(i)**H is applied to C(1:m,i:n) */
|
|
|
|
ni = *n - i__ + 1;
|
|
jc = i__;
|
|
}
|
|
|
|
/* Apply H(i) or H(i)**H */
|
|
|
|
if (notran) {
|
|
i__3 = i__;
|
|
taui.r = tau[i__3].r, taui.i = tau[i__3].i;
|
|
} else {
|
|
d_cnjg(&z__1, &tau[i__]);
|
|
taui.r = z__1.r, taui.i = z__1.i;
|
|
}
|
|
i__3 = i__ + i__ * a_dim1;
|
|
aii.r = a[i__3].r, aii.i = a[i__3].i;
|
|
i__3 = i__ + i__ * a_dim1;
|
|
a[i__3].r = 1., a[i__3].i = 0.;
|
|
zlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], &c__1, &taui, &c__[ic
|
|
+ jc * c_dim1], ldc, &work[1], (ftnlen)1);
|
|
i__3 = i__ + i__ * a_dim1;
|
|
a[i__3].r = aii.r, a[i__3].i = aii.i;
|
|
/* L10: */
|
|
}
|
|
return 0;
|
|
|
|
/* End of ZUNM2R */
|
|
|
|
} /* zunm2r_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|