Files
lammps/lib/linalg/zunmqr.cpp
Axel Kohlmeyer 1e8b2ad5a0 whitespace fixes
2022-12-28 13:48:43 -05:00

421 lines
13 KiB
C++

/* fortran/zunmqr.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__2 = 2;
static integer c__65 = 65;
/* > \brief \b ZUNMQR */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZUNMQR + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmqr.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmqr.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmqr.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, */
/* WORK, LWORK, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER SIDE, TRANS */
/* INTEGER INFO, K, LDA, LDC, LWORK, M, N */
/* .. */
/* .. Array Arguments .. */
/* COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZUNMQR overwrites the general complex M-by-N matrix C with */
/* > */
/* > SIDE = 'L' SIDE = 'R' */
/* > TRANS = 'N': Q * C C * Q */
/* > TRANS = 'C': Q**H * C C * Q**H */
/* > */
/* > where Q is a complex unitary matrix defined as the product of k */
/* > elementary reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(k) */
/* > */
/* > as returned by ZGEQRF. Q is of order M if SIDE = 'L' and of order N */
/* > if SIDE = 'R'. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'L': apply Q or Q**H from the Left; */
/* > = 'R': apply Q or Q**H from the Right. */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > = 'N': No transpose, apply Q; */
/* > = 'C': Conjugate transpose, apply Q**H. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix C. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix C. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > The number of elementary reflectors whose product defines */
/* > the matrix Q. */
/* > If SIDE = 'L', M >= K >= 0; */
/* > if SIDE = 'R', N >= K >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension (LDA,K) */
/* > The i-th column must contain the vector which defines the */
/* > elementary reflector H(i), for i = 1,2,...,k, as returned by */
/* > ZGEQRF in the first k columns of its array argument A. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. */
/* > If SIDE = 'L', LDA >= max(1,M); */
/* > if SIDE = 'R', LDA >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[in] TAU */
/* > \verbatim */
/* > TAU is COMPLEX*16 array, dimension (K) */
/* > TAU(i) must contain the scalar factor of the elementary */
/* > reflector H(i), as returned by ZGEQRF. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C */
/* > \verbatim */
/* > C is COMPLEX*16 array, dimension (LDC,N) */
/* > On entry, the M-by-N matrix C. */
/* > On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of the array C. LDC >= max(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > If SIDE = 'L', LWORK >= max(1,N); */
/* > if SIDE = 'R', LWORK >= max(1,M). */
/* > For good performance, LWORK should generally be larger. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup complex16OTHERcomputational */
/* ===================================================================== */
/* Subroutine */ int zunmqr_(char *side, char *trans, integer *m, integer *n,
integer *k, doublecomplex *a, integer *lda, doublecomplex *tau,
doublecomplex *c__, integer *ldc, doublecomplex *work, integer *lwork,
integer *info, ftnlen side_len, ftnlen trans_len)
{
/* System generated locals */
address a__1[2];
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
i__5;
char ch__1[2];
/* Builtin functions */
/* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
/* Local variables */
integer i__, i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iwt;
logical left;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer nbmin, iinfo;
extern /* Subroutine */ int zunm2r_(char *, char *, integer *, integer *,
integer *, doublecomplex *, integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *, ftnlen,
ftnlen), xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *,
integer *, integer *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, ftnlen, ftnlen, ftnlen, ftnlen);
logical notran;
integer ldwork;
extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, ftnlen, ftnlen);
integer lwkopt;
logical lquery;
/* -- LAPACK computational routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
left = lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1);
notran = lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1);
lquery = *lwork == -1;
/* NQ is the order of Q and NW is the minimum dimension of WORK */
if (left) {
nq = *m;
nw = max(1,*n);
} else {
nq = *n;
nw = max(1,*m);
}
if (! left && ! lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) {
*info = -1;
} else if (! notran && ! lsame_(trans, (char *)"C", (ftnlen)1, (ftnlen)1)) {
*info = -2;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*k < 0 || *k > nq) {
*info = -5;
} else if (*lda < max(1,nq)) {
*info = -7;
} else if (*ldc < max(1,*m)) {
*info = -10;
} else if (*lwork < nw && ! lquery) {
*info = -12;
}
if (*info == 0) {
/* Compute the workspace requirements */
/* Computing MIN */
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = 64, i__2 = ilaenv_(&c__1, (char *)"ZUNMQR", ch__1, m, n, k, &c_n1, (
ftnlen)6, (ftnlen)2);
nb = min(i__1,i__2);
lwkopt = nw * nb + 4160;
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"ZUNMQR", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0 || *k == 0) {
work[1].r = 1., work[1].i = 0.;
return 0;
}
nbmin = 2;
ldwork = nw;
if (nb > 1 && nb < *k) {
if (*lwork < lwkopt) {
nb = (*lwork - 4160) / ldwork;
/* Computing MAX */
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = 2, i__2 = ilaenv_(&c__2, (char *)"ZUNMQR", ch__1, m, n, k, &c_n1, (
ftnlen)6, (ftnlen)2);
nbmin = max(i__1,i__2);
}
}
if (nb < nbmin || nb >= *k) {
/* Use unblocked code */
zunm2r_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
c_offset], ldc, &work[1], &iinfo, (ftnlen)1, (ftnlen)1);
} else {
/* Use blocked code */
iwt = nw * nb + 1;
if (left && ! notran || ! left && notran) {
i1 = 1;
i2 = *k;
i3 = nb;
} else {
i1 = (*k - 1) / nb * nb + 1;
i2 = 1;
i3 = -nb;
}
if (left) {
ni = *n;
jc = 1;
} else {
mi = *m;
ic = 1;
}
i__1 = i2;
i__2 = i3;
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
i__4 = nb, i__5 = *k - i__ + 1;
ib = min(i__4,i__5);
/* Form the triangular factor of the block reflector */
/* H = H(i) H(i+1) . . . H(i+ib-1) */
i__4 = nq - i__ + 1;
zlarft_((char *)"Forward", (char *)"Columnwise", &i__4, &ib, &a[i__ + i__ *
a_dim1], lda, &tau[i__], &work[iwt], &c__65, (ftnlen)7, (
ftnlen)10);
if (left) {
/* H or H**H is applied to C(i:m,1:n) */
mi = *m - i__ + 1;
ic = i__;
} else {
/* H or H**H is applied to C(1:m,i:n) */
ni = *n - i__ + 1;
jc = i__;
}
/* Apply H or H**H */
zlarfb_(side, trans, (char *)"Forward", (char *)"Columnwise", &mi, &ni, &ib, &a[
i__ + i__ * a_dim1], lda, &work[iwt], &c__65, &c__[ic +
jc * c_dim1], ldc, &work[1], &ldwork, (ftnlen)1, (ftnlen)
1, (ftnlen)7, (ftnlen)10);
/* L10: */
}
}
work[1].r = (doublereal) lwkopt, work[1].i = 0.;
return 0;
/* End of ZUNMQR */
} /* zunmqr_ */
#ifdef __cplusplus
}
#endif