Files
lammps/src/RHEO/compute_rheo_surface.cpp
2024-07-15 17:19:51 -06:00

418 lines
11 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors:
Joel Clemmer (SNL), Thomas O'Connor (CMU), Eric Palermo (CMU)
----------------------------------------------------------------------- */
#include "compute_rheo_surface.h"
#include "atom.h"
#include "comm.h"
#include "compute_rheo_interface.h"
#include "compute_rheo_kernel.h"
#include "domain.h"
#include "error.h"
#include "fix_rheo.h"
#include "force.h"
#include "math_extra.h"
#include "memory.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
using namespace LAMMPS_NS;
using namespace RHEO_NS;
using namespace FixConst;
using namespace MathExtra;
static constexpr double EPSILON = 1e-10;
/* ---------------------------------------------------------------------- */
ComputeRHEOSurface::ComputeRHEOSurface(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg), fix_rheo(nullptr), list(nullptr), rho0(nullptr), compute_kernel(nullptr), compute_interface(nullptr),
B(nullptr), gradC(nullptr), nsurface(nullptr), divr(nullptr), rsurface(nullptr)
{
if (narg != 3) error->all(FLERR,"Illegal compute RHEO/SURFACE command");
int dim = domain->dimension;
comm_forward = 2;
comm_reverse = dim * dim + 1;
nmax_store = 0;
grow_arrays(atom->nmax);
}
/* ---------------------------------------------------------------------- */
ComputeRHEOSurface::~ComputeRHEOSurface()
{
memory->destroy(divr);
memory->destroy(rsurface);
memory->destroy(nsurface);
memory->destroy(B);
memory->destroy(gradC);
}
/* ---------------------------------------------------------------------- */
void ComputeRHEOSurface::init()
{
compute_kernel = fix_rheo->compute_kernel;
compute_interface = fix_rheo->compute_interface;
cut = fix_rheo->cut;
rho0 = fix_rheo->rho0;
threshold_style = fix_rheo->surface_style;
threshold_divr = fix_rheo->divr_surface;
threshold_z = fix_rheo->zmin_surface;
threshold_splash = fix_rheo->zmin_splash;
interface_flag = fix_rheo->interface_flag;
cutsq = cut * cut;
// need an occasional half neighbor list
neighbor->add_request(this, NeighConst::REQ_DEFAULT);
}
/* ---------------------------------------------------------------------- */
void ComputeRHEOSurface::init_list(int /*id*/, NeighList *ptr)
{
list = ptr;
}
/* ---------------------------------------------------------------------- */
void ComputeRHEOSurface::compute_peratom()
{
int i, j, ii, jj, inum, jnum, a, b, itype, jtype, fluidi, fluidj;
double xtmp, ytmp, ztmp, rsq, Voli, Volj, rhoi, rhoj, wp;
double dWij[3], dWji[3], dx[3];
int *ilist, *jlist, *numneigh, **firstneigh;
int nlocal = atom->nlocal;
double **x = atom->x;
int *status = atom->rheo_status;
int newton = force->newton;
int dim = domain->dimension;
int *mask = atom->mask;
int *type = atom->type;
double *mass = atom->mass;
double *rho = atom->rho;
int *coordination = compute_kernel->coordination;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// Grow and zero arrays
if (nmax_store < atom->nmax)
grow_arrays(atom->nmax);
size_t nbytes = nmax_store * sizeof(double);
memset(&divr[0], 0, nbytes);
memset(&rsurface[0], 0, nbytes);
memset(&nsurface[0][0], 0, dim * nbytes);
memset(&gradC[0][0], 0, dim * dim * nbytes);
memset(&B[0][0], 0, dim * dim * nbytes);
// loop over neighbors to calculate the average orientation of neighbors
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
jlist = firstneigh[i];
jnum = numneigh[i];
itype = type[i];
fluidi = !(status[i] & PHASECHECK);
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
dx[0] = xtmp - x[j][0];
dx[1] = ytmp - x[j][1];
dx[2] = ztmp - x[j][2];
rsq = lensq3(dx);
if (rsq < cutsq) {
jtype = type[j];
fluidj = !(status[j] & PHASECHECK);
rhoi = rho[i];
rhoj = rho[j];
// Add corrections for walls
if (interface_flag) {
if (fluidi && (!fluidj)) {
rhoj = compute_interface->correct_rho(j, i);
} else if ((!fluidi) && fluidj) {
rhoi = compute_interface->correct_rho(i, j);
} else if ((!fluidi) && (!fluidj)) {
rhoi = rho0[itype];
rhoj = rho0[jtype];
}
}
Voli = mass[itype] / rhoi;
Volj = mass[jtype] / rhoj;
wp = compute_kernel->calc_dw_quintic(i, j, dx[0], dx[1], dx[2], sqrt(rsq), dWij, dWji);
for (a = 0; a < dim; a++) {
divr[i] -= dWij[a] * dx[a] * Volj;
gradC[i][a] += dWij[a] * Volj;
}
if ((j < nlocal) || newton) {
for (a = 0; a < dim; a++){
divr[j] += dWji[a] * dx[a] * Voli;
gradC[j][a] += dWji[a] * Voli;
}
}
}
}
}
// reverse gradC and divr, forward divr
comm_stage = 0;
comm_reverse = dim * dim + 1;
comm_forward = 1;
if (newton) comm->reverse_comm(this);
comm->forward_comm(this);
// calculate nsurface for local atoms
// Note, this isn't forwarded to ghosts
double maggC;
for (i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
maggC = 0.0;
for (a = 0;a < dim; a++)
maggC += gradC[i][a] * gradC[i][a];
maggC = sqrt(maggC) + EPSILON;
maggC = 1.0 / maggC;
for (a = 0; a < dim; a++)
nsurface[i][a] = -gradC[i][a] * maggC;
}
}
// Remove surface settings and assign new values
int nall = nlocal + atom->nghost;
int test;
for (i = 0; i < nall; i++) {
status[i] &= SURFACEMASK;
if (mask[i] & groupbit) {
if (threshold_style == DIVR)
test = divr[i] < threshold_divr;
else
test = coordination[i] < threshold_z;
// Treat nonfluid particles as bulk
if (status[i] & PHASECHECK)
test = 0;
if (test) {
if (coordination[i] < threshold_splash)
status[i] |= STATUS_SPLASH;
else
status[i] |= STATUS_SURFACE;
rsurface[i] = 0.0;
} else {
status[i] |= STATUS_BULK;
rsurface[i] = cut;
}
}
}
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
fluidi = !(status[i] & PHASECHECK);
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
fluidj = !(status[j] & PHASECHECK);
dx[0] = xtmp - x[j][0];
dx[1] = ytmp - x[j][1];
dx[2] = ztmp - x[j][2];
rsq = lensq3(dx);
if (rsq < cutsq) {
if (fluidi) {
if ((status[i] & STATUS_BULK) && (status[j] & STATUS_SURFACE)) {
status[i] &= SURFACEMASK;
status[i] |= STATUS_LAYER;
}
if (status[j] & STATUS_SURFACE)
rsurface[i] = MIN(rsurface[i], sqrt(rsq));
}
if (fluidj && (j < nlocal || newton)) {
if ((status[j] & STATUS_BULK) && (status[j] & PHASECHECK) && (status[i] & STATUS_SURFACE)) {
status[j] &= SURFACEMASK;
status[j] |= STATUS_LAYER;
}
if (status[i] & STATUS_SURFACE)
rsurface[j] = MIN(rsurface[j], sqrt(rsq));
}
}
}
}
// clear normal vectors for non-surface particles
for (i = 0; i < nall; i++) {
if (mask[i] & groupbit) {
if (!(status[i] & STATUS_SURFACE))
for (a = 0; a < dim; a++)
nsurface[i][a] = 0.0;
}
}
// forward/reverse status and rsurface
comm_stage = 1;
comm_reverse = 2;
comm_forward = 2;
if (newton) comm->reverse_comm(this);
comm->forward_comm(this);
}
/* ---------------------------------------------------------------------- */
int ComputeRHEOSurface::pack_reverse_comm(int n, int first, double *buf)
{
int i,a,b,k,m,last;
int dim = domain->dimension;
int *status = atom->rheo_status;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
if (comm_stage == 0) {
buf[m++] = divr[i];
for (a = 0; a < dim; a ++ )
for (b = 0; b < dim; b ++)
buf[m++] = gradC[i][a * dim + b];
} else if (comm_stage == 1) {
buf[m++] = (double) status[i];
buf[m++] = rsurface[i];
}
}
return m;
}
/* ---------------------------------------------------------------------- */
void ComputeRHEOSurface::unpack_reverse_comm(int n, int *list, double *buf)
{
int i,a,b,k,j,m;
int dim = domain->dimension;
int *status = atom->rheo_status;
int tmp1;
double tmp2;
m = 0;
for (i = 0; i < n; i++) {
j = list[i];
if (comm_stage == 0) {
divr[j] += buf[m++];
for (a = 0; a < dim; a ++ )
for (b = 0; b < dim; b ++)
gradC[j][a * dim + b] += buf[m++];
} else if (comm_stage == 1) {
tmp1 = (int) buf[m++];
if ((status[j] & STATUS_BULK) && (tmp1 & STATUS_LAYER)) {
status[j] &= SURFACEMASK;
status[j] |= STATUS_LAYER;
}
tmp2 = buf[m++];
rsurface[j] = MIN(rsurface[j], tmp2);
}
}
}
/* ---------------------------------------------------------------------- */
int ComputeRHEOSurface::pack_forward_comm(int n, int *list, double *buf,
int /*pbc_flag*/, int * /*pbc*/)
{
int i,j,a,b,k,m;
int *status = atom->rheo_status;
m = 0;
for (i = 0; i < n; i++) {
j = list[i];
if (comm_stage == 0) {
buf[m++] = divr[j];
} else if (comm_stage == 1) {
buf[m++] = (double) status[j];
buf[m++] = rsurface[j];
}
}
return m;
}
/* ---------------------------------------------------------------------- */
void ComputeRHEOSurface::unpack_forward_comm(int n, int first, double *buf)
{
int i, k, a, b, m, last;
int *status = atom->rheo_status;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
if (comm_stage == 0) {
divr[i] = buf[m++];
} else if (comm_stage == 1) {
status[i] = (int) buf[m++];
rsurface[i] = buf[m++];
}
}
}
/* ---------------------------------------------------------------------- */
void ComputeRHEOSurface::grow_arrays(int nmax)
{
int dim = domain->dimension;
memory->grow(divr, nmax, "rheo/surface:divr");
memory->grow(rsurface, nmax, "rheo/surface:rsurface");
memory->grow(nsurface, nmax, dim, "rheo/surface:nsurface");
memory->grow(B, nmax, dim * dim, "rheo/surface:B");
memory->grow(gradC, nmax, dim * dim, "rheo/surface:gradC");
nmax_store = nmax;
}