Files
lammps/src/REPLICA/fix_alchemy.cpp

266 lines
8.3 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "fix_alchemy.h"
#include "atom.h"
#include "comm.h"
#include "compute.h"
#include "domain.h"
#include "error.h"
#include "input.h"
#include "memory.h"
#include "modify.h"
#include "respa.h"
#include "universe.h"
#include "update.h"
#include "variable.h"
#include <cstring>
using namespace LAMMPS_NS;
using namespace FixConst;
/* ---------------------------------------------------------------------- */
FixAlchemy::FixAlchemy(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg), commbuf(nullptr)
{
if (narg != 4) error->all(FLERR, "Incorrect number of arguments for fix alchemy");
if (universe->nworlds != 2) error->all(FLERR, "Must use exactly two partitions");
if (utils::strmatch(arg[3], "^v_"))
id_lambda = arg[3] + 2;
else
error->all(FLERR, "Must use variable as lambda argument to fix alchemy");
lambda = epot[0] = epot[1] = epot[2] = 0.0;
progress = 0;
for (int i = 0; i < 6; ++i) pressure[i] = 0.0;
no_change_box = 1;
time_depend = 1;
scalar_flag = 1;
extscalar = 0;
vector_flag = 1;
size_vector = 3;
extvector = 1;
ilevel_respa = 0;
nmax = 6;
sync_box = 0;
// set up rank-to-rank communicator for inter-partition communication
int color = comm->me;
int key = universe->iworld;
MPI_Comm_split(universe->uworld, color, key, &samerank);
// check that we have the same domain decomposition on all ranks
int my_nlocal[2] = {0, 0};
int all_nlocal[2] = {0, 0};
my_nlocal[universe->iworld] = atom->nlocal;
MPI_Allreduce(my_nlocal, all_nlocal, 2, MPI_INT, MPI_SUM, samerank);
int fail = (all_nlocal[0] == all_nlocal[1]) ? 0 : 1;
int allfail = 0;
MPI_Allreduce(&fail, &allfail, 1, MPI_INT, MPI_MAX, universe->uworld);
if (allfail)
error->all(FLERR, "Number of atoms and domain decomposition must match for both partitions");
id_pe = std::string(id) + "_pe";
pe = modify->add_compute(id_pe + " all pe");
pe->addstep(update->ntimestep);
id_temp = std::string(id) + "_temp";
temp = modify->add_compute(id_temp + " all temp");
temp->addstep(update->ntimestep);
id_press = std::string(id) + "_press";
press = modify->add_compute(id_press + " all pressure " + id_temp);
press->addstep(update->ntimestep);
}
/* ---------------------------------------------------------------------- */
FixAlchemy::~FixAlchemy()
{
MPI_Comm_free(&samerank);
modify->delete_compute(id_pe);
modify->delete_compute(id_temp);
modify->delete_compute(id_press);
memory->destroy(commbuf);
}
/* ---------------------------------------------------------------------- */
int FixAlchemy::setmask()
{
int mask = 0;
mask |= POST_INTEGRATE;
mask |= POST_FORCE;
return mask;
}
/* ---------------------------------------------------------------------- */
static void synchronize_box(Domain *domain, MPI_Comm samerank)
{
MPI_Bcast(&domain->boxlo[0], 3, MPI_DOUBLE, 0, samerank);
MPI_Bcast(&domain->boxhi[0], 3, MPI_DOUBLE, 0, samerank);
MPI_Bcast(&domain->yz, 1, MPI_DOUBLE, 0, samerank);
MPI_Bcast(&domain->xz, 1, MPI_DOUBLE, 0, samerank);
MPI_Bcast(&domain->xy, 1, MPI_DOUBLE, 0, samerank);
domain->set_global_box();
domain->set_local_box();
}
/* ---------------------------------------------------------------------- */
void FixAlchemy::init()
{
int onenmax = MAX(nmax, 3 * atom->nmax);
MPI_Allreduce(&onenmax, &nmax, 1, MPI_INT, MPI_MAX, universe->uworld);
memory->destroy(commbuf);
memory->create(commbuf, sizeof(double) * nmax, "alchemy:nmax");
if (modify->get_fix_by_style("^balance").size() > 0)
error->all(FLERR, "Fix alchemy is not compatible with load balancing");
if (modify->get_fix_by_style("^alchemy").size() > 1)
error->all(FLERR, "There may only one fix alchemy at a time");
ivar = input->variable->find(id_lambda.c_str());
if (ivar < 0)
error->universe_one(FLERR, fmt::format("Variable {} for fix alchemy does not exist", id_lambda));
if (!input->variable->equalstyle(ivar))
error->universe_one(FLERR,
fmt::format("Variable {} for fix alchemy is invalid style", id_lambda));
lambda = input->variable->compute_equal(ivar);
// synchronize box dimensions, determine if resync during run will be needed.
synchronize_box(domain, samerank);
sync_box = 0;
for (auto ifix : modify->get_fix_list())
if (ifix->box_change) sync_box = 1;
}
/* ---------------------------------------------------------------------- */
void FixAlchemy::setup(int vflag)
{
if (utils::strmatch(update->integrate_style, "^respa")) {
auto respa = dynamic_cast<Respa *>(update->integrate);
respa->copy_flevel_f(ilevel_respa);
post_force_respa(vflag, ilevel_respa, 0);
respa->copy_f_flevel(ilevel_respa);
} else {
post_force(vflag);
}
if (universe->me == 0) {
double delta = update->ntimestep - update->beginstep;
if ((delta != 0.0) && (update->beginstep != update->endstep))
delta /= update->endstep - update->beginstep;
progress = static_cast<int>(delta*100.0);
auto msg = fmt::format("Starting alchemical transformation at {:>3d}%\n", progress);
if (universe->uscreen) fmt::print(universe->uscreen, msg);
if (universe->ulogfile) fmt::print(universe->ulogfile, msg);
}
}
/* ---------------------------------------------------------------------- */
void FixAlchemy::post_integrate()
{
// synchronize atom positions
const int nall = atom->nlocal + atom->nghost;
MPI_Bcast(&atom->x[0][0], 3 * nall, MPI_DOUBLE, 0, samerank);
// synchronize box dimensions, if needed
if (sync_box) synchronize_box(domain, samerank);
}
/* ---------------------------------------------------------------------- */
void FixAlchemy::post_force(int /*vflag*/)
{
if (3 * atom->nmax > nmax) {
nmax = 3 * atom->nmax;
memory->grow(commbuf, sizeof(double) * atom->nmax, "alchemy:commbuf");
}
const int nall = 3 * atom->nlocal;
double *f = &atom->f[0][0];
lambda = input->variable->compute_equal(ivar);
for (int i = 0; i < nall; ++i) commbuf[i] = f[i] * lambda;
MPI_Allreduce(commbuf, f, nall, MPI_DOUBLE, MPI_SUM, samerank);
// sum up potential energy
const double scalefac = 1.0 / comm->nprocs;
commbuf[0] = commbuf[1] = commbuf[2] = 0.0;
commbuf[universe->iworld] = scalefac * pe->compute_scalar();
commbuf[2] = lambda * scalefac * pe->compute_scalar();
MPI_Allreduce(commbuf, epot, 3, MPI_DOUBLE, MPI_SUM, universe->uworld);
pe->addstep(update->ntimestep + 1);
// sum up pressure
press->compute_vector();
for (int i = 0; i < 6; ++i) commbuf[i] = lambda * scalefac * press->vector[i];
MPI_Allreduce(commbuf, pressure, 6, MPI_DOUBLE, MPI_SUM, universe->uworld);
press->addstep(update->ntimestep + 1);
// print progress info
if (universe->me == 0) {
double delta = update->ntimestep - update->beginstep;
if ((delta != 0.0) && (update->beginstep != update->endstep))
delta /= update->endstep - update->beginstep;
int status = static_cast<int>(delta*100.0);
if ((status / 10) > (progress / 10)) {
progress = status;
auto msg = fmt::format(" Alchemical transformation progress: {:>3d}%\n", progress);
if (universe->uscreen) fmt::print(universe->uscreen, msg);
if (universe->ulogfile) fmt::print(universe->ulogfile, msg);
}
}
}
/* ---------------------------------------------------------------------- */
double FixAlchemy::compute_scalar()
{
return lambda;
}
/* ---------------------------------------------------------------------- */
double FixAlchemy::compute_vector(int n)
{
return epot[n];
}
/* ---------------------------------------------------------------------- */
void *FixAlchemy::extract(const char *str, int &dim)
{
dim = 0;
if (strcmp(str, "lambda") == 0) { return &lambda; }
if (strcmp(str, "pe") == 0) { return &epot[2]; }
dim = 1;
if (strcmp(str, "pressure") == 0) { return pressure; }
return nullptr;
}