Files
lammps/src/region_prism.cpp
2024-12-16 19:57:41 +02:00

802 lines
25 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Pieter in 't Veld (SNL)
------------------------------------------------------------------------- */
#include "region_prism.h"
#include "domain.h"
#include "error.h"
#include "input.h"
#include "math_extra.h"
#include "update.h"
#include "variable.h"
#include <cstring>
using namespace LAMMPS_NS;
static constexpr double BIG = 1.0e20;
/* ---------------------------------------------------------------------- */
RegPrism::RegPrism(LAMMPS *lmp, int narg, char **arg) : Region(lmp, narg, arg),
xlostr(nullptr), ylostr(nullptr), zlostr(nullptr), xhistr(nullptr),
yhistr(nullptr), zhistr(nullptr), xystr(nullptr), xzstr(nullptr), yzstr(nullptr)
{
options(narg - 11, &arg[11]);
xlostyle = CONSTANT;
if (strcmp(arg[2], "INF") == 0 || strcmp(arg[2], "EDGE") == 0) {
if (domain->box_exist == 0)
error->all(FLERR, "Cannot use region INF or EDGE when box does not exist");
if (strcmp(arg[2], "INF") == 0)
xlo = -BIG;
else
xlo = domain->boxlo[0];
} else if (utils::strmatch(arg[2], "^v_")) {
xlostr = utils::strdup(arg[2] + 2);
xlo = 0.0;
xlostyle = VARIABLE;
varshape = 1;
} else
xlo = xscale * utils::numeric(FLERR, arg[2], false, lmp);
xhistyle = CONSTANT;
if (strcmp(arg[3], "INF") == 0 || strcmp(arg[3], "EDGE") == 0) {
if (domain->box_exist == 0)
error->all(FLERR, "Cannot use region INF or EDGE when box does not exist");
if (strcmp(arg[3], "INF") == 0)
xhi = BIG;
else
xhi = domain->boxhi[0];
} else if (utils::strmatch(arg[3], "^v_")) {
xhistr = utils::strdup(arg[3] + 2);
xhi = 0.0;
xhistyle = VARIABLE;
varshape = 1;
} else
xhi = xscale * utils::numeric(FLERR, arg[3], false, lmp);
ylostyle = CONSTANT;
if (strcmp(arg[4], "INF") == 0 || strcmp(arg[4], "EDGE") == 0) {
if (domain->box_exist == 0)
error->all(FLERR, "Cannot use region INF or EDGE when box does not exist");
if (strcmp(arg[4], "INF") == 0)
ylo = -BIG;
else
ylo = domain->boxlo[1];
} else if (utils::strmatch(arg[4], "^v_")) {
ylostr = utils::strdup(arg[4] + 2);
ylo = 0.0;
ylostyle = VARIABLE;
varshape = 1;
} else
ylo = yscale * utils::numeric(FLERR, arg[4], false, lmp);
yhistyle = CONSTANT;
if (strcmp(arg[5], "INF") == 0 || strcmp(arg[5], "EDGE") == 0) {
if (domain->box_exist == 0)
error->all(FLERR, "Cannot use region INF or EDGE when box does not exist");
if (strcmp(arg[5], "INF") == 0)
yhi = BIG;
else
yhi = domain->boxhi[1];
} else if (utils::strmatch(arg[5], "^v_")) {
yhistr = utils::strdup(arg[5] + 2);
yhi = 0.0;
yhistyle = VARIABLE;
varshape = 1;
} else
yhi = yscale * utils::numeric(FLERR, arg[5], false, lmp);
zlostyle = CONSTANT;
if (strcmp(arg[6], "INF") == 0 || strcmp(arg[6], "EDGE") == 0) {
if (domain->box_exist == 0)
error->all(FLERR, "Cannot use region INF or EDGE when box does not exist");
if (strcmp(arg[6], "INF") == 0)
zlo = -BIG;
else
zlo = domain->boxlo[2];
} else if (utils::strmatch(arg[6], "^v_")) {
zlostr = utils::strdup(arg[6] + 2);
zlo = 0.0;
zlostyle = VARIABLE;
varshape = 1;
} else
zlo = zscale * utils::numeric(FLERR, arg[6], false, lmp);
zhistyle = CONSTANT;
if (strcmp(arg[7], "INF") == 0 || strcmp(arg[7], "EDGE") == 0) {
if (domain->box_exist == 0)
error->all(FLERR, "Cannot use region INF or EDGE when box does not exist");
if (strcmp(arg[7], "INF") == 0)
zhi = BIG;
else
zhi = domain->boxhi[2];
} else if (utils::strmatch(arg[7], "^v_")) {
zhistr = utils::strdup(arg[7] + 2);
zhi = 0.0;
zhistyle = VARIABLE;
varshape = 1;
} else
zhi = zscale * utils::numeric(FLERR, arg[7], false, lmp);
if (utils::strmatch(arg[8], "^v_")) {
xystr = utils::strdup(arg[8] + 2);
xy = 0.0;
xystyle = VARIABLE;
varshape = 1;
} else {
xy = xscale * utils::numeric(FLERR, arg[8], false, lmp);
xystyle = CONSTANT;
}
if (utils::strmatch(arg[9], "^v_")) {
xzstr = utils::strdup(arg[9] + 2);
xz = 0.0;
xzstyle = VARIABLE;
varshape = 1;
} else {
xz = xscale * utils::numeric(FLERR, arg[9], false, lmp);
xzstyle = CONSTANT;
}
if (utils::strmatch(arg[10], "^v_")) {
yzstr = utils::strdup(arg[10] + 2);
yz = 0.0;
yzstyle = VARIABLE;
varshape = 1;
} else {
yz = yscale * utils::numeric(FLERR, arg[10], false, lmp);
yzstyle = CONSTANT;
}
if (varshape) {
variable_check();
RegPrism::shape_update();
}
// error check
// prism cannot be 0 thickness in any dim, else inverse blows up
// non-zero tilt values cannot be used if either dim is INF on both ends
if (xlo >= xhi) error->all(FLERR, "Illegal region prism xlo: {} >= xhi: {}", xlo, xhi);
if (ylo >= yhi) error->all(FLERR, "Illegal region prism ylo: {} >= yhi: {}", ylo, yhi);
if (zlo >= zhi) error->all(FLERR, "Illegal region prism zlo: {} >= zhi: {}", zlo, zhi);
if (xy != 0.0 && xlo == -BIG && xhi == BIG)
error->all(FLERR, "Illegal region prism non-zero xy tilt with infinite x size");
if (xy != 0.0 && ylo == -BIG && yhi == BIG)
error->all(FLERR, "Illegal region prism non-zero xy tilt with infinite y size");
if (xz != 0.0 && xlo == -BIG && xhi == BIG)
error->all(FLERR, "Illegal region prism non-zero xz tilt with infinite x size");
if (xz != 0.0 && zlo == -BIG && zhi == BIG)
error->all(FLERR, "Illegal region prism non-zero xz tilt with infinite z size");
if (yz != 0.0 && ylo == -BIG && yhi == BIG)
error->all(FLERR, "Illegal region prism non-zero yz tilt with infinite y size");
if (yz != 0.0 && zlo == -BIG && zhi == BIG)
error->all(FLERR, "Illegal region prism non-zero yz tilt with infinite z size");
// extent of prism
if (interior) {
bboxflag = 1;
extent_xlo = MIN(xlo, xlo + xy);
extent_xlo = MIN(extent_xlo, extent_xlo + xz);
extent_ylo = MIN(ylo, ylo + yz);
extent_zlo = zlo;
extent_xhi = MAX(xhi, xhi + xy);
extent_xhi = MAX(extent_xhi, extent_xhi + xz);
extent_yhi = MAX(yhi, yhi + yz);
extent_zhi = zhi;
} else
bboxflag = 0;
// particle could be close to all 6 planes
// particle can only touch 3 planes
cmax = 6;
contact = new Contact[cmax];
if (interior)
tmax = 3;
else
tmax = 1;
// h = transformation matrix from tilt coords (0-1) to box coords (xyz)
// columns of h are edge vectors of tilted box
// hinv = transformation matrix from box coords to tilt coords
// both h and hinv are upper triangular
// since 1st edge of prism is along x-axis
// and bottom face of prism is in xy plane
h[0][0] = xhi - xlo;
h[0][1] = xy;
h[0][2] = xz;
h[1][1] = yhi - ylo;
h[1][2] = yz;
h[2][2] = zhi - zlo;
hinv[0][0] = 1.0 / h[0][0];
hinv[0][1] = -h[0][1] / (h[0][0] * h[1][1]);
hinv[0][2] = (h[0][1] * h[1][2] - h[0][2] * h[1][1]) / (h[0][0] * h[1][1] * h[2][2]);
hinv[1][1] = 1.0 / h[1][1];
hinv[1][2] = -h[1][2] / (h[1][1] * h[2][2]);
hinv[2][2] = 1.0 / h[2][2];
// corners = 8 corner points of prism
// order = x varies fastest, then y, finally z
// clo/chi = lo and hi corner pts of prism
a[0] = xhi - xlo;
a[1] = 0.0;
a[2] = 0.0;
b[0] = xy;
b[1] = yhi - ylo;
b[2] = 0.0;
c[0] = xz;
c[1] = yz;
c[2] = zhi - zlo;
clo[0] = corners[0][0] = xlo;
clo[1] = corners[0][1] = ylo;
clo[2] = corners[0][2] = zlo;
corners[1][0] = xlo + a[0];
corners[1][1] = ylo + a[1];
corners[1][2] = zlo + a[2];
corners[2][0] = xlo + b[0];
corners[2][1] = ylo + b[1];
corners[2][2] = zlo + b[2];
corners[3][0] = xlo + a[0] + b[0];
corners[3][1] = ylo + a[1] + b[1];
corners[3][2] = zlo + a[2] + b[2];
corners[4][0] = xlo + c[0];
corners[4][1] = ylo + c[1];
corners[4][2] = zlo + c[2];
corners[5][0] = xlo + a[0] + c[0];
corners[5][1] = ylo + a[1] + c[1];
corners[5][2] = zlo + a[2] + c[2];
corners[6][0] = xlo + b[0] + c[0];
corners[6][1] = ylo + b[1] + c[1];
corners[6][2] = zlo + b[2] + c[2];
chi[0] = corners[7][0] = xlo + a[0] + b[0] + c[0];
chi[1] = corners[7][1] = ylo + a[1] + b[1] + c[1];
chi[2] = corners[7][2] = zlo + a[2] + b[2] + c[2];
// face = 6 inward-facing unit normals to prism faces
// order = xy plane, xz plane, yz plane
MathExtra::cross3(a, b, face[0]);
MathExtra::cross3(b, a, face[1]);
MathExtra::cross3(c, a, face[2]);
MathExtra::cross3(a, c, face[3]);
MathExtra::cross3(b, c, face[4]);
MathExtra::cross3(c, b, face[5]);
// remap open face indices to be consistent
if (openflag) {
int temp[6];
for (int i = 0; i < 6; i++) temp[i] = open_faces[i];
open_faces[0] = temp[4];
open_faces[1] = temp[5];
open_faces[2] = temp[2];
open_faces[3] = temp[3];
open_faces[4] = temp[0];
open_faces[5] = temp[1];
}
for (int i = 0; i < 6; i++) MathExtra::norm3(face[i]);
// tri = 3 vertices (0-7) in each of 12 triangles on 6 faces
// verts in each tri are ordered so that right-hand rule gives inward norm
// order = xy plane, xz plane, yz plane
tri[0][0] = 0;
tri[0][1] = 1;
tri[0][2] = 3;
tri[1][0] = 0;
tri[1][1] = 3;
tri[1][2] = 2;
tri[2][0] = 4;
tri[2][1] = 7;
tri[2][2] = 5;
tri[3][0] = 4;
tri[3][1] = 6;
tri[3][2] = 7;
tri[4][0] = 0;
tri[4][1] = 4;
tri[4][2] = 5;
tri[5][0] = 0;
tri[5][1] = 5;
tri[5][2] = 1;
tri[6][0] = 2;
tri[6][1] = 7;
tri[6][2] = 6;
tri[7][0] = 2;
tri[7][1] = 3;
tri[7][2] = 7;
tri[8][0] = 2;
tri[8][1] = 6;
tri[8][2] = 4;
tri[9][0] = 2;
tri[9][1] = 4;
tri[9][2] = 0;
tri[10][0] = 1;
tri[10][1] = 5;
tri[10][2] = 7;
tri[11][0] = 1;
tri[11][1] = 7;
tri[11][2] = 3;
}
/* ---------------------------------------------------------------------- */
RegPrism::~RegPrism()
{
delete[] xlostr;
delete[] ylostr;
delete[] zlostr;
delete[] xhistr;
delete[] yhistr;
delete[] zhistr;
delete[] xystr;
delete[] xzstr;
delete[] yzstr;
delete[] contact;
}
/* ---------------------------------------------------------------------- */
void RegPrism::init()
{
Region::init();
if (varshape) variable_check();
}
/* ----------------------------------------------------------------------
inside = 1 if x,y,z is inside or on surface
inside = 0 if x,y,z is outside and not on surface
abc = Hinv * (xyz - xyz/lo)
abc = tilt coords (0-1)
Hinv = transformation matrix from box coords to tilt coords
xyz = box coords
xyz/lo = lower-left corner of prism
------------------------------------------------------------------------- */
int RegPrism::inside(double x, double y, double z)
{
double a = hinv[0][0] * (x - xlo) + hinv[0][1] * (y - ylo) + hinv[0][2] * (z - zlo);
double b = hinv[1][1] * (y - ylo) + hinv[1][2] * (z - zlo);
double c = hinv[2][2] * (z - zlo);
if (a >= 0.0 && a <= 1.0 && b >= 0.0 && b <= 1.0 && c >= 0.0 && c <= 1.0) return 1;
return 0;
}
/* ----------------------------------------------------------------------
contact if 0 <= x < cutoff from one or more inner surfaces of prism
can be one contact for each of 6 faces
no contact if outside (possible if called from union/intersect)
delxyz = vector from nearest point on prism to x
------------------------------------------------------------------------- */
int RegPrism::surface_interior(double *x, double cutoff)
{
int i;
double dot;
double *corner;
// x is exterior to prism
for (i = 0; i < 6; i++) {
if (i % 2)
corner = chi;
else
corner = clo;
dot = (x[0] - corner[0]) * face[i][0] + (x[1] - corner[1]) * face[i][1] +
(x[2] - corner[2]) * face[i][2];
if (dot < 0.0) return 0;
}
// x is interior to prism or on its surface
int n = 0;
for (i = 0; i < 6; i++) {
if (open_faces[i]) continue;
if (i % 2)
corner = chi;
else
corner = clo;
dot = (x[0] - corner[0]) * face[i][0] + (x[1] - corner[1]) * face[i][1] +
(x[2] - corner[2]) * face[i][2];
if (dot < cutoff) {
contact[n].r = dot;
contact[n].delx = dot * face[i][0];
contact[n].dely = dot * face[i][1];
contact[n].delz = dot * face[i][2];
contact[n].radius = 0;
contact[n].iwall = i;
n++;
}
}
return n;
}
/* ----------------------------------------------------------------------
one contact if 0 <= x < cutoff from outer surface of prism
no contact if inside (possible if called from union/intersect)
delxyz = vector from nearest point on prism to x
------------------------------------------------------------------------- */
int RegPrism::surface_exterior(double *x, double cutoff)
{
int i;
double dot;
double *corner;
double xp, yp, zp;
// x is far enough from prism that there is no contact
for (i = 0; i < 6; i++) {
if (i % 2)
corner = chi;
else
corner = clo;
dot = (x[0] - corner[0]) * face[i][0] + (x[1] - corner[1]) * face[i][1] +
(x[2] - corner[2]) * face[i][2];
if (dot <= -cutoff) return 0;
}
// x is interior to prism
for (i = 0; i < 6; i++) {
if (i % 2)
corner = chi;
else
corner = clo;
dot = (x[0] - corner[0]) * face[i][0] + (x[1] - corner[1]) * face[i][1] +
(x[2] - corner[2]) * face[i][2];
if (dot <= 0.0) break;
}
if (i == 6) return 0;
// x is exterior to prism or on its surface
// xp,yp,zp = point on surface of prism that x is closest to
// could be edge or corner pt of prism
// do not add contact point if r >= cutoff
find_nearest(x, xp, yp, zp);
add_contact(0, x, xp, yp, zp);
contact[0].radius = 0;
contact[0].iwall = 0;
if (contact[0].r < cutoff) return 1;
return 0;
}
/* ----------------------------------------------------------------------
change region shape via variable evaluation
------------------------------------------------------------------------- */
void RegPrism::shape_update()
{
if (xlostyle == VARIABLE) xlo = xscale * input->variable->compute_equal(xlovar);
if (xhistyle == VARIABLE) xhi = xscale * input->variable->compute_equal(xhivar);
if (ylostyle == VARIABLE) ylo = yscale * input->variable->compute_equal(ylovar);
if (yhistyle == VARIABLE) yhi = yscale * input->variable->compute_equal(yhivar);
if (zlostyle == VARIABLE) zlo = zscale * input->variable->compute_equal(zlovar);
if (zhistyle == VARIABLE) zhi = zscale * input->variable->compute_equal(zhivar);
if (xystyle == VARIABLE) xy = xscale * input->variable->compute_equal(xyvar);
if (xzstyle == VARIABLE) xz = xscale * input->variable->compute_equal(xzvar);
if (yzstyle == VARIABLE) yz = yscale * input->variable->compute_equal(yzvar);
// error check
// prism cannot be 0 thickness in any dim, else inverse blows up
// non-zero tilt values cannot be used if either dim is INF on both ends
if (xlo >= xhi) error->all(FLERR, "Illegal region prism xlo: {} >= xhi: {}", xlo, xhi);
if (ylo >= yhi) error->all(FLERR, "Illegal region prism ylo: {} >= yhi: {}", ylo, yhi);
if (zlo >= zhi) error->all(FLERR, "Illegal region prism zlo: {} >= zhi: {}", zlo, zhi);
if (xy != 0.0 && xlo == -BIG && xhi == BIG)
error->all(FLERR, "Illegal region prism non-zero xy tilt with infinite x size");
if (xy != 0.0 && ylo == -BIG && yhi == BIG)
error->all(FLERR, "Illegal region prism non-zero xy tilt with infinite y size");
if (xz != 0.0 && xlo == -BIG && xhi == BIG)
error->all(FLERR, "Illegal region prism non-zero xz tilt with infinite x size");
if (xz != 0.0 && zlo == -BIG && zhi == BIG)
error->all(FLERR, "Illegal region prism non-zero xz tilt with infinite z size");
if (yz != 0.0 && ylo == -BIG && yhi == BIG)
error->all(FLERR, "Illegal region prism non-zero yz tilt with infinite y size");
if (yz != 0.0 && zlo == -BIG && zhi == BIG)
error->all(FLERR, "Illegal region prism non-zero yz tilt with infinite z size");
// extent of prism
if (interior) {
extent_xlo = MIN(xlo, xlo + xy);
extent_xlo = MIN(extent_xlo, extent_xlo + xz);
extent_ylo = MIN(ylo, ylo + yz);
extent_zlo = zlo;
extent_xhi = MAX(xhi, xhi + xy);
extent_xhi = MAX(extent_xhi, extent_xhi + xz);
extent_yhi = MAX(yhi, yhi + yz);
extent_zhi = zhi;
}
// h = transformation matrix from tilt coords (0-1) to box coords (xyz)
h[0][0] = xhi - xlo;
h[0][1] = xy;
h[0][2] = xz;
h[1][1] = yhi - ylo;
h[1][2] = yz;
h[2][2] = zhi - zlo;
hinv[0][0] = 1.0 / h[0][0];
hinv[0][1] = -h[0][1] / (h[0][0] * h[1][1]);
hinv[0][2] = (h[0][1] * h[1][2] - h[0][2] * h[1][1]) / (h[0][0] * h[1][1] * h[2][2]);
hinv[1][1] = 1.0 / h[1][1];
hinv[1][2] = -h[1][2] / (h[1][1] * h[2][2]);
hinv[2][2] = 1.0 / h[2][2];
// corners = 8 corner points of prism
a[0] = xhi - xlo;
a[1] = 0.0;
a[2] = 0.0;
b[0] = xy;
b[1] = yhi - ylo;
b[2] = 0.0;
c[0] = xz;
c[1] = yz;
c[2] = zhi - zlo;
clo[0] = corners[0][0] = xlo;
clo[1] = corners[0][1] = ylo;
clo[2] = corners[0][2] = zlo;
corners[1][0] = xlo + a[0];
corners[1][1] = ylo + a[1];
corners[1][2] = zlo + a[2];
corners[2][0] = xlo + b[0];
corners[2][1] = ylo + b[1];
corners[2][2] = zlo + b[2];
corners[3][0] = xlo + a[0] + b[0];
corners[3][1] = ylo + a[1] + b[1];
corners[3][2] = zlo + a[2] + b[2];
corners[4][0] = xlo + c[0];
corners[4][1] = ylo + c[1];
corners[4][2] = zlo + c[2];
corners[5][0] = xlo + a[0] + c[0];
corners[5][1] = ylo + a[1] + c[1];
corners[5][2] = zlo + a[2] + c[2];
corners[6][0] = xlo + b[0] + c[0];
corners[6][1] = ylo + b[1] + c[1];
corners[6][2] = zlo + b[2] + c[2];
chi[0] = corners[7][0] = xlo + a[0] + b[0] + c[0];
chi[1] = corners[7][1] = ylo + a[1] + b[1] + c[1];
chi[2] = corners[7][2] = zlo + a[2] + b[2] + c[2];
// face = 6 inward-facing unit normals to prism faces
MathExtra::cross3(a, b, face[0]);
MathExtra::cross3(b, a, face[1]);
MathExtra::cross3(c, a, face[2]);
MathExtra::cross3(a, c, face[3]);
MathExtra::cross3(b, c, face[4]);
MathExtra::cross3(c, b, face[5]);
for (int i = 0; i < 6; i++) MathExtra::norm3(face[i]);
}
/* ----------------------------------------------------------------------
error check on existence of variable
------------------------------------------------------------------------- */
void RegPrism::variable_check()
{
if (xlostyle == VARIABLE) {
xlovar = input->variable->find(xlostr);
if (xlovar < 0) error->all(FLERR, "Variable {} for region prism does not exist", xlostr);
if (!input->variable->equalstyle(xlovar))
error->all(FLERR, "Variable {} for region prism is invalid style", xlostr);
}
if (xhistyle == VARIABLE) {
xhivar = input->variable->find(xhistr);
if (xhivar < 0) error->all(FLERR, "Variable {} for region prism does not exist", xhistr);
if (!input->variable->equalstyle(xhivar))
error->all(FLERR, "Variable {} for region prism is invalid style", xhistr);
}
if (ylostyle == VARIABLE) {
ylovar = input->variable->find(ylostr);
if (ylovar < 0) error->all(FLERR, "Variable {} for region prism does not exist", ylostr);
if (!input->variable->equalstyle(ylovar))
error->all(FLERR, "Variable {} for region prism is invalid style", ylostr);
}
if (yhistyle == VARIABLE) {
yhivar = input->variable->find(yhistr);
if (yhivar < 0) error->all(FLERR, "Variable {} for region prism does not exist", yhistr);
if (!input->variable->equalstyle(yhivar))
error->all(FLERR, "Variable {} for region prism is invalid style", yhistr);
}
if (zlostyle == VARIABLE) {
zlovar = input->variable->find(zlostr);
if (zlovar < 0) error->all(FLERR, "Variable {} for region prism does not exist", zlostr);
if (!input->variable->equalstyle(zlovar))
error->all(FLERR, "Variable {} for region prism is invalid style", zlostr);
}
if (zhistyle == VARIABLE) {
zhivar = input->variable->find(zhistr);
if (zhivar < 0) error->all(FLERR, "Variable {} for region prism does not exist", zhistr);
if (!input->variable->equalstyle(zhivar))
error->all(FLERR, "Variable {} for region prism is invalid style", zhistr);
}
if (xystyle == VARIABLE) {
xyvar = input->variable->find(xystr);
if (xyvar < 0) error->all(FLERR, "Variable {} for region prism does not exist", xystr);
if (!input->variable->equalstyle(xyvar))
error->all(FLERR, "Variable {} for region prism is invalid style", xystr);
}
if (xzstyle == VARIABLE) {
xzvar = input->variable->find(xzstr);
if (xzvar < 0) error->all(FLERR, "Variable {} for region prism does not exist", xzstr);
if (!input->variable->equalstyle(xzvar))
error->all(FLERR, "Variable {} for region prism is invalid style", xzstr);
}
if (yzstyle == VARIABLE) {
yzvar = input->variable->find(yzstr);
if (yzvar < 0) error->all(FLERR, "Variable {} for region prism does not exist", yzstr);
if (!input->variable->equalstyle(yzvar))
error->all(FLERR, "Variable {} for region prism is invalid style", yzstr);
}
}
/* ----------------------------------------------------------------------
x is exterior to prism or on its surface
return (xp,yp,zp) = nearest pt to x that is on surface of prism
------------------------------------------------------------------------- */
void RegPrism::find_nearest(double *x, double &xp, double &yp, double &zp)
{
int i, j, k, iface;
double xproj[3], xline[3], nearest[3];
double dot;
// generate successive xnear points, one nearest to x is (xp,yp,zp)
// loop over 6 faces and 2 triangles in each face
// xproj = x projected to plane of triangle
// if xproj is inside or on triangle boundary, that is xnear
// else: loop over 3 edges of triangle
// compute distance to edge line
// xnear = nearest point on line to xproj, bounded by segment end pts
double distsq = BIG;
for (int itri = 0; itri < 12; itri++) {
iface = itri / 2;
if (open_faces[iface]) continue;
i = tri[itri][0];
j = tri[itri][1];
k = tri[itri][2];
dot = (x[0] - corners[i][0]) * face[iface][0] + (x[1] - corners[i][1]) * face[iface][1] +
(x[2] - corners[i][2]) * face[iface][2];
xproj[0] = x[0] - dot * face[iface][0];
xproj[1] = x[1] - dot * face[iface][1];
xproj[2] = x[2] - dot * face[iface][2];
if (inside_tri(xproj, corners[i], corners[j], corners[k], face[iface])) {
distsq = closest(x, xproj, nearest, distsq);
} else {
point_on_line_segment(corners[i], corners[j], xproj, xline);
distsq = closest(x, xline, nearest, distsq);
point_on_line_segment(corners[j], corners[k], xproj, xline);
distsq = closest(x, xline, nearest, distsq);
point_on_line_segment(corners[i], corners[k], xproj, xline);
distsq = closest(x, xline, nearest, distsq);
}
}
xp = nearest[0];
yp = nearest[1];
zp = nearest[2];
}
/* ----------------------------------------------------------------------
test if x is inside triangle with vertices v1,v2,v3
norm = normal to triangle, defined by right-hand rule for v1,v2,v3 ordering
edge = edge vector of triangle
pvec = vector from vertex to x
xproduct = cross product of edge with pvec
if xproduct dot norm < 0.0 for any of 3 edges, then x is outside triangle
------------------------------------------------------------------------- */
int RegPrism::inside_tri(double *x, double *v1, double *v2, double *v3, double *norm)
{
double edge[3], pvec[3], xproduct[3];
MathExtra::sub3(v2, v1, edge);
MathExtra::sub3(x, v1, pvec);
MathExtra::cross3(edge, pvec, xproduct);
if (MathExtra::dot3(xproduct, norm) < 0.0) return 0;
MathExtra::sub3(v3, v2, edge);
MathExtra::sub3(x, v2, pvec);
MathExtra::cross3(edge, pvec, xproduct);
if (MathExtra::dot3(xproduct, norm) < 0.0) return 0;
MathExtra::sub3(v1, v3, edge);
MathExtra::sub3(x, v3, pvec);
MathExtra::cross3(edge, pvec, xproduct);
if (MathExtra::dot3(xproduct, norm) < 0.0) return 0;
return 1;
}
/* ---------------------------------------------------------------------- */
double RegPrism::closest(double *x, double *near, double *nearest, double dsq)
{
double delx = x[0] - near[0];
double dely = x[1] - near[1];
double delz = x[2] - near[2];
double rsq = delx * delx + dely * dely + delz * delz;
if (rsq >= dsq) return dsq;
nearest[0] = near[0];
nearest[1] = near[1];
nearest[2] = near[2];
return rsq;
}