797 lines
22 KiB
Plaintext
797 lines
22 KiB
Plaintext
polystyrene trimer
|
|
|
|
48 atoms
|
|
7 atom types
|
|
50 bonds
|
|
13 bond types
|
|
84 angles
|
|
22 angle types
|
|
127 dihedrals
|
|
36 dihedral types
|
|
36 impropers
|
|
9 improper types
|
|
|
|
50 250 xlo xhi
|
|
50 250 ylo yhi
|
|
50 250 zlo zhi
|
|
|
|
Masses
|
|
|
|
1 12.0112
|
|
2 1.00797
|
|
3 12.0112
|
|
4 12.0112
|
|
5 12.0112
|
|
6 12.0112
|
|
7 12.0112
|
|
|
|
Pair Coeffs # lj/class2/coul/long
|
|
|
|
1 0.064 4.01
|
|
2 0.02 2.7
|
|
3 0.064 4.01
|
|
4 0.064 3.9
|
|
5 0.054 4.01
|
|
6 0.054 4.01
|
|
7 0.054 4.01
|
|
|
|
Bond Coeffs # class2
|
|
|
|
1 1.0982 372.825 -803.453 894.317
|
|
2 1.417 470.836 -627.618 1327.63
|
|
3 1.501 321.902 -521.821 572.163
|
|
4 1.0883 365.768 -725.54 781.662
|
|
5 1.34 543.99 -1238.2 1644.03
|
|
6 1.0883 365.768 -725.54 781.662
|
|
7 1.501 321.902 -521.821 572.163
|
|
8 1.101 345 -691.89 844.6
|
|
9 1.53 299.67 -501.77 679.81
|
|
10 1.101 345 -691.89 844.6
|
|
11 1.501 321.902 -521.821 572.163
|
|
12 1.101 345 -691.89 844.6
|
|
13 1.53 299.67 -501.77 679.81
|
|
|
|
Angle Coeffs # class2
|
|
|
|
1 117.94 35.1558 -12.4682 0
|
|
2 118.9 61.0226 -34.9931 0
|
|
3 120.05 44.7148 -22.7352 0
|
|
4 111 44.3234 -9.4454 0
|
|
5 108.4 43.9594 -8.3924 -9.3379
|
|
6 124.88 35.2766 -17.774 -1.6215
|
|
7 124.88 35.2766 -17.774 -1.6215
|
|
8 115.49 29.6363 -12.4853 -6.2218
|
|
9 120.05 44.7148 -22.7352 0
|
|
10 111 44.3234 -9.4454 0
|
|
11 108.4 43.9594 -8.3924 -9.3379
|
|
12 110.77 41.453 -10.604 5.129
|
|
13 112.67 39.516 -7.443 -9.5583
|
|
14 110.77 41.453 -10.604 5.129
|
|
15 107.66 39.641 -12.921 -2.4318
|
|
16 112.67 39.516 -7.443 -9.5583
|
|
17 120.05 44.7148 -22.7352 0
|
|
18 111 44.3234 -9.4454 0
|
|
19 108.4 43.9594 -8.3924 -9.3379
|
|
20 110.77 41.453 -10.604 5.129
|
|
21 110.77 41.453 -10.604 5.129
|
|
22 112.67 39.516 -7.443 -9.5583
|
|
|
|
BondBond Coeffs
|
|
|
|
1 1.0795 1.417 1.0982
|
|
2 68.2856 1.417 1.417
|
|
3 12.0676 1.417 1.501
|
|
4 2.9168 1.501 1.0883
|
|
5 0 1.501 1.34
|
|
6 10.1047 1.0883 1.34
|
|
7 10.1047 1.0883 1.34
|
|
8 4.8506 1.0883 1.0883
|
|
9 12.0676 1.417 1.501
|
|
10 2.9168 1.501 1.101
|
|
11 0 1.501 1.53
|
|
12 3.3872 1.101 1.53
|
|
13 0 1.53 1.53
|
|
14 3.3872 1.101 1.53
|
|
15 5.3316 1.101 1.101
|
|
16 0 1.53 1.53
|
|
17 12.0676 1.417 1.501
|
|
18 2.9168 1.501 1.101
|
|
19 0 1.501 1.53
|
|
20 3.3872 1.101 1.53
|
|
21 3.3872 1.101 1.53
|
|
22 0 1.53 1.53
|
|
|
|
BondAngle Coeffs
|
|
|
|
1 20.0033 24.2183 1.417 1.0982
|
|
2 28.8708 28.8708 1.417 1.417
|
|
3 31.0771 47.0579 1.417 1.501
|
|
4 26.4608 11.7717 1.501 1.0883
|
|
5 0 0 1.501 1.34
|
|
6 19.0592 23.3588 1.0883 1.34
|
|
7 19.0592 23.3588 1.0883 1.34
|
|
8 17.9795 17.9795 1.0883 1.0883
|
|
9 31.0771 47.0579 1.417 1.501
|
|
10 26.4608 11.7717 1.501 1.101
|
|
11 0 0 1.501 1.53
|
|
12 11.421 20.754 1.101 1.53
|
|
13 8.016 8.016 1.53 1.53
|
|
14 11.421 20.754 1.101 1.53
|
|
15 18.103 18.103 1.101 1.101
|
|
16 8.016 8.016 1.53 1.53
|
|
17 31.0771 47.0579 1.417 1.501
|
|
18 26.4608 11.7717 1.501 1.101
|
|
19 0 0 1.501 1.53
|
|
20 11.421 20.754 1.101 1.53
|
|
21 11.421 20.754 1.101 1.53
|
|
22 8.016 8.016 1.53 1.53
|
|
|
|
Dihedral Coeffs # class2
|
|
|
|
1 0 0 1.559 0 0 0
|
|
2 0 0 3.9661 0 0 0
|
|
3 0 0 4.4072 0 0 0
|
|
4 8.3667 0 1.1932 0 0 0
|
|
5 0 0 1.8769 0 0 0
|
|
6 0 0 0 0 0 0
|
|
7 0 0 0 0 0 0
|
|
8 0 0 0 0 0 0
|
|
9 0 0 4.8974 0 0 0
|
|
10 0 0 1.559 0 0 0
|
|
11 0 0 4.4072 0 0 0
|
|
12 -0.2801 0 -0.0678 0 -0.0122 0
|
|
13 -0.2802 0 -0.0678 0 -0.0122 0
|
|
14 -0.0228 0 0.028 0 -0.1863 0
|
|
15 -0.1432 0 0.0617 0 -0.1083 0
|
|
16 0 0 0.0316 0 -0.1681 0
|
|
17 0 0 0 0 0 0
|
|
18 0 0 0.0316 0 -0.1681 0
|
|
19 0 0 0.0514 0 -0.143 0
|
|
20 0 0 1.559 0 0 0
|
|
21 0 0 4.4072 0 0 0
|
|
22 -0.2801 0 -0.0678 0 -0.0122 0
|
|
23 -0.2802 0 -0.0678 0 -0.0122 0
|
|
24 -0.0228 0 0.028 0 -0.1863 0
|
|
25 0 0 0 0 0 0
|
|
26 -0.1432 0 0.0617 0 -0.1083 0
|
|
27 0 0 0.0316 0 -0.1681 0
|
|
28 0 0 0 0 0 0
|
|
29 0 0 0.0316 0 -0.1681 0
|
|
30 0 0 0.0514 0 -0.143 0
|
|
31 -0.0228 0 0.028 0 -0.1863 0
|
|
32 -0.1432 0 0.0617 0 -0.1083 0
|
|
33 0 0 0.0316 0 -0.1681 0
|
|
34 0 0 0 0 0 0
|
|
35 0 0 0.0316 0 -0.1681 0
|
|
36 0 0 0.0514 0 -0.143 0
|
|
|
|
AngleAngleTorsion Coeffs
|
|
|
|
1 4.4444 117.94 120.05
|
|
2 -4.8141 118.9 117.94
|
|
3 -14.4097 118.9 120.05
|
|
4 0 118.9 118.9
|
|
5 0.3598 117.94 117.94
|
|
6 0 120.05 111
|
|
7 0 120.05 108.4
|
|
8 0 108.4 124.88
|
|
9 -7.0058 124.88 124.88
|
|
10 4.4444 117.94 120.05
|
|
11 -14.4097 118.9 120.05
|
|
12 -5.8888 120.05 111
|
|
13 0 120.05 108.4
|
|
14 0 108.4 110.77
|
|
15 -12.564 110.77 110.77
|
|
16 -16.164 112.67 110.77
|
|
17 0 108.4 112.67
|
|
18 -16.164 110.77 112.67
|
|
19 -22.045 112.67 112.67
|
|
20 4.4444 117.94 120.05
|
|
21 -14.4097 118.9 120.05
|
|
22 -5.8888 120.05 111
|
|
23 0 120.05 108.4
|
|
24 0 108.4 110.77
|
|
25 0 108.4 112.67
|
|
26 -12.564 110.77 110.77
|
|
27 -16.164 110.77 112.67
|
|
28 0 112.67 108.4
|
|
29 -16.164 112.67 110.77
|
|
30 -22.045 112.67 112.67
|
|
31 0 110.77 108.4
|
|
32 -12.564 110.77 110.77
|
|
33 -16.164 110.77 112.67
|
|
34 0 112.67 108.4
|
|
35 -16.164 112.67 110.77
|
|
36 -22.045 112.67 112.67
|
|
|
|
EndBondTorsion Coeffs
|
|
|
|
1 0 -0.4879 0 0 -1.797 0 1.0982 1.501
|
|
2 0 -6.8958 0 0 -0.4669 0 1.417 1.0982
|
|
3 0 -0.6918 0 0 0.2421 0 1.417 1.501
|
|
4 -0.1185 6.3204 0 -0.1185 6.3204 0 1.417 1.417
|
|
5 0 -0.689 0 0 -0.689 0 1.0982 1.0982
|
|
6 0 0 0 0 0 0 1.417 1.0883
|
|
7 0 0 0 0 0 0 1.417 1.34
|
|
8 0 0 0 0 0 0 1.501 1.0883
|
|
9 0.7129 0.5161 0 0.7129 0.5161 0 1.0883 1.0883
|
|
10 0 -0.4879 0 0 -1.797 0 1.0982 1.501
|
|
11 0 -0.6918 0 0 0.2421 0 1.417 1.501
|
|
12 -0.5835 1.122 0.3978 1.3997 0.7756 0 1.417 1.101
|
|
13 0 0 0 0 0 0 1.417 1.53
|
|
14 0 0 0 0 0 0 1.501 1.101
|
|
15 0.213 0.312 0.0777 0.213 0.312 0.0777 1.101 1.101
|
|
16 0.2486 0.2422 -0.0925 0.0814 0.0591 0.2219 1.53 1.101
|
|
17 0 0 0 0 0 0 1.501 1.53
|
|
18 0.0814 0.0591 0.2219 0.2486 0.2422 -0.0925 1.101 1.53
|
|
19 -0.0732 0 0 -0.0732 0 0 1.53 1.53
|
|
20 0 -0.4879 0 0 -1.797 0 1.0982 1.501
|
|
21 0 -0.6918 0 0 0.2421 0 1.417 1.501
|
|
22 -0.5835 1.122 0.3978 1.3997 0.7756 0 1.417 1.101
|
|
23 0 0 0 0 0 0 1.417 1.53
|
|
24 0 0 0 0 0 0 1.501 1.101
|
|
25 0 0 0 0 0 0 1.501 1.53
|
|
26 0.213 0.312 0.0777 0.213 0.312 0.0777 1.101 1.101
|
|
27 0.0814 0.0591 0.2219 0.2486 0.2422 -0.0925 1.101 1.53
|
|
28 0 0 0 0 0 0 1.53 1.501
|
|
29 0.2486 0.2422 -0.0925 0.0814 0.0591 0.2219 1.53 1.101
|
|
30 -0.0732 0 0 -0.0732 0 0 1.53 1.53
|
|
31 0 0 0 0 0 0 1.101 1.501
|
|
32 0.213 0.312 0.0777 0.213 0.312 0.0777 1.101 1.101
|
|
33 0.0814 0.0591 0.2219 0.2486 0.2422 -0.0925 1.101 1.53
|
|
34 0 0 0 0 0 0 1.53 1.501
|
|
35 0.2486 0.2422 -0.0925 0.0814 0.0591 0.2219 1.53 1.101
|
|
36 -0.0732 0 0 -0.0732 0 0 1.53 1.53
|
|
|
|
MiddleBondTorsion Coeffs
|
|
|
|
1 0 3.9421 0 1.417
|
|
2 0 -1.1521 0 1.417
|
|
3 0 9.1792 0 1.417
|
|
4 27.5989 -2.312 0 1.417
|
|
5 0 4.8228 0 1.417
|
|
6 0 0 0 1.501
|
|
7 0 0 0 1.501
|
|
8 0 0 0 1.34
|
|
9 0.8558 6.3911 0 1.34
|
|
10 0 3.9421 0 1.417
|
|
11 0 9.1792 0 1.417
|
|
12 -5.5679 1.4083 0.301 1.501
|
|
13 0 0 0 1.501
|
|
14 0 0 0 1.53
|
|
15 -14.261 -0.5322 -0.4864 1.53
|
|
16 -14.879 -3.6581 -0.3138 1.53
|
|
17 0 0 0 1.53
|
|
18 -14.879 -3.6581 -0.3138 1.53
|
|
19 -17.787 -7.1877 0 1.53
|
|
20 0 3.9421 0 1.417
|
|
21 0 9.1792 0 1.417
|
|
22 -5.5679 1.4083 0.301 1.501
|
|
23 0 0 0 1.501
|
|
24 0 0 0 1.53
|
|
25 0 0 0 1.53
|
|
26 -14.261 -0.5322 -0.4864 1.53
|
|
27 -14.879 -3.6581 -0.3138 1.53
|
|
28 0 0 0 1.53
|
|
29 -14.879 -3.6581 -0.3138 1.53
|
|
30 -17.787 -7.1877 0 1.53
|
|
31 0 0 0 1.53
|
|
32 -14.261 -0.5322 -0.4864 1.53
|
|
33 -14.879 -3.6581 -0.3138 1.53
|
|
34 0 0 0 1.53
|
|
35 -14.879 -3.6581 -0.3138 1.53
|
|
36 -17.787 -7.1877 0 1.53
|
|
|
|
BondBond13 Coeffs
|
|
|
|
1 0.8743 1.0982 1.501
|
|
2 -6.2741 1.417 1.0982
|
|
3 2.5085 1.417 1.501
|
|
4 53 1.417 1.417
|
|
5 -1.7077 1.0982 1.0982
|
|
6 0 1.417 1.0883
|
|
7 0 1.417 1.34
|
|
8 0 1.501 1.0883
|
|
9 0 1.0883 1.0883
|
|
10 0.8743 1.0982 1.501
|
|
11 2.5085 1.417 1.501
|
|
12 -3.4826 1.417 1.101
|
|
13 0 1.417 1.53
|
|
14 0 1.501 1.101
|
|
15 0 1.101 1.101
|
|
16 0 1.53 1.101
|
|
17 0 1.501 1.53
|
|
18 0 1.101 1.53
|
|
19 0 1.53 1.53
|
|
20 0.8743 1.0982 1.501
|
|
21 2.5085 1.417 1.501
|
|
22 -3.4826 1.417 1.101
|
|
23 0 1.417 1.53
|
|
24 0 1.501 1.101
|
|
25 0 1.501 1.53
|
|
26 0 1.101 1.101
|
|
27 0 1.101 1.53
|
|
28 0 1.53 1.501
|
|
29 0 1.53 1.101
|
|
30 0 1.53 1.53
|
|
31 0 1.101 1.501
|
|
32 0 1.101 1.101
|
|
33 0 1.101 1.53
|
|
34 0 1.53 1.501
|
|
35 0 1.53 1.101
|
|
36 0 1.53 1.53
|
|
|
|
AngleTorsion Coeffs
|
|
|
|
1 0 3.4601 0 0 -0.1242 0 117.94 120.05
|
|
2 0 2.5014 0 0 2.7147 0 118.9 117.94
|
|
3 0 3.8987 0 0 -4.4683 0 118.9 120.05
|
|
4 1.9767 1.0239 0 1.9767 1.0239 0 118.9 118.9
|
|
5 0 2.4501 0 0 2.4501 0 117.94 117.94
|
|
6 0 0 0 0 0 0 120.05 111
|
|
7 0 0 0 0 0 0 120.05 108.4
|
|
8 0 0 0 0 0 0 108.4 124.88
|
|
9 -1.8911 3.254 0 -1.8911 3.254 0 124.88 124.88
|
|
10 0 3.4601 0 0 -0.1242 0 117.94 120.05
|
|
11 0 3.8987 0 0 -4.4683 0 118.9 120.05
|
|
12 0.2251 0.6548 0.1237 4.6266 0.1632 0.0461 120.05 111
|
|
13 0 0 0 0 0 0 120.05 108.4
|
|
14 0 0 0 0 0 0 108.4 110.77
|
|
15 -0.8085 0.5569 -0.2466 -0.8085 0.5569 -0.2466 110.77 110.77
|
|
16 -0.2454 0 -0.1136 0.3113 0.4516 -0.1988 112.67 110.77
|
|
17 0 0 0 0 0 0 108.4 112.67
|
|
18 0.3113 0.4516 -0.1988 -0.2454 0 -0.1136 110.77 112.67
|
|
19 0.3886 -0.3139 0.1389 0.3886 -0.3139 0.1389 112.67 112.67
|
|
20 0 3.4601 0 0 -0.1242 0 117.94 120.05
|
|
21 0 3.8987 0 0 -4.4683 0 118.9 120.05
|
|
22 0.2251 0.6548 0.1237 4.6266 0.1632 0.0461 120.05 111
|
|
23 0 0 0 0 0 0 120.05 108.4
|
|
24 0 0 0 0 0 0 108.4 110.77
|
|
25 0 0 0 0 0 0 108.4 112.67
|
|
26 -0.8085 0.5569 -0.2466 -0.8085 0.5569 -0.2466 110.77 110.77
|
|
27 0.3113 0.4516 -0.1988 -0.2454 0 -0.1136 110.77 112.67
|
|
28 0 0 0 0 0 0 112.67 108.4
|
|
29 -0.2454 0 -0.1136 0.3113 0.4516 -0.1988 112.67 110.77
|
|
30 0.3886 -0.3139 0.1389 0.3886 -0.3139 0.1389 112.67 112.67
|
|
31 0 0 0 0 0 0 110.77 108.4
|
|
32 -0.8085 0.5569 -0.2466 -0.8085 0.5569 -0.2466 110.77 110.77
|
|
33 0.3113 0.4516 -0.1988 -0.2454 0 -0.1136 110.77 112.67
|
|
34 0 0 0 0 0 0 112.67 108.4
|
|
35 -0.2454 0 -0.1136 0.3113 0.4516 -0.1988 112.67 110.77
|
|
36 0.3886 -0.3139 0.1389 0.3886 -0.3139 0.1389 112.67 112.67
|
|
|
|
Improper Coeffs # class2
|
|
|
|
1 4.8912 0
|
|
2 7.8153 0
|
|
3 0 0
|
|
4 2.8561 0
|
|
5 7.8153 0
|
|
6 0 0
|
|
7 0 0
|
|
8 7.8153 0
|
|
9 0 0
|
|
|
|
AngleAngle Coeffs
|
|
|
|
1 0 0 0 118.9 117.94 117.94
|
|
2 0 0 0 118.9 120.05 120.05
|
|
3 0 0 0 111 124.88 108.4
|
|
4 0 0 0 115.49 124.88 124.88
|
|
5 0 0 0 118.9 120.05 120.05
|
|
6 0 0 0 107.66 110.77 110.77
|
|
7 0 0 0 111 110.77 108.4
|
|
8 0 0 0 118.9 120.05 120.05
|
|
9 0 0 0 111 110.77 108.4
|
|
|
|
Atoms # full
|
|
|
|
44 1 2 3.5400000000000001e-02 6.1476397222913839e+01 8.2376490601205234e+01 6.0906939115836181e+01
|
|
45 1276 2 3.5400000000000001e-02 5.8398688202244472e+01 8.0172948526664996e+01 6.2115536813582672e+01
|
|
46 1276 6 -6.9599999999999995e-02 5.9489073989392523e+01 8.0264057167571636e+01 6.1984002598976552e+01
|
|
48 1276 2 3.5400000000000001e-02 5.9675170230342431e+01 8.0048052449390738e+01 6.0920159395372401e+01
|
|
47 1276 2 1.2370000000000000e-01 5.9297455513100488e+01 8.3187777608476154e+01 5.9645157256520122e+01
|
|
18 1 5 -1.8200000000000001e-02 6.2426251430535707e+01 8.2055473568260709e+01 6.2971661388612958e+01
|
|
19 1 6 -6.9599999999999995e-02 6.1399255844467369e+01 8.1794665295860213e+01 6.1821819828185660e+01
|
|
21 1 1 -1.2900000000000000e-01 6.4032918371445831e+01 8.0190179089286701e+01 6.3021564712316334e+01
|
|
22 1 1 2.6599999999999999e-02 6.3672975135915053e+01 8.1418558650051665e+01 6.2448012627881994e+01
|
|
23 1 2 3.5400000000000001e-02 6.1545198223694939e+01 8.0836309422842305e+01 6.1349823957467130e+01
|
|
27 1276 2 5.1600000000000000e-02 5.9809503696580933e+01 8.1831265916389881e+01 6.3253745193271065e+01
|
|
28 1276 5 -1.8200000000000001e-02 5.9900307947967441e+01 8.1677453781363639e+01 6.2190757403657820e+01
|
|
31 1276 2 1.2370000000000000e-01 5.8050043823867973e+01 8.2698312265456622e+01 6.3667111329534436e+01
|
|
38 1 2 1.2370000000000000e-01 6.3754126973935612e+01 7.9931147303963002e+01 6.4022259163067275e+01
|
|
20 1 2 1.2370000000000000e-01 6.4070158368422781e+01 8.2950071388392274e+01 6.1042631212883315e+01
|
|
24 1 1 -1.2900000000000000e-01 6.4337973861569580e+01 8.1916618276489871e+01 6.1387866780102470e+01
|
|
37 1 2 1.4030000000000001e-01 6.5360115866618415e+01 7.8586112104863830e+01 6.3004997314380716e+01
|
|
39 1 1 -1.7340000000000000e-01 6.5018338085325610e+01 7.9478260591306125e+01 6.2440745569712817e+01
|
|
40 1 1 -1.1340000000000000e-01 6.5628759887796605e+01 7.9941156332165264e+01 6.1248476296558067e+01
|
|
41 1 1 -1.7340000000000000e-01 6.5247995680260402e+01 8.1172439250598345e+01 6.0753045571239831e+01
|
|
42 1 2 1.2880000000000000e-01 6.6569600059599281e+01 7.9514748976494360e+01 6.0810611807135601e+01
|
|
43 1 2 1.4030000000000001e-01 6.5780165393063371e+01 8.1570974991007958e+01 5.9850915261812396e+01
|
|
9 1276 2 1.2880000000000000e-01 5.5651795605743445e+01 8.5074472139235127e+01 6.1094480497979262e+01
|
|
30 1276 2 1.4030000000000001e-01 5.6082982679196888e+01 8.3912863624076010e+01 6.3351889697403472e+01
|
|
33 1276 1 -1.7340000000000000e-01 5.6718133911388506e+01 8.3758479063002000e+01 6.2493293749545209e+01
|
|
34 1276 1 -1.1340000000000000e-01 5.6498352105218459e+01 8.4426576393179090e+01 6.1290147608586011e+01
|
|
6 3822 1 -1.7340000000000000e-01 6.3308103537340351e+01 8.7713509787622499e+01 6.4643082313868433e+01
|
|
7 3822 1 -1.2900000000000000e-01 6.3010291684764312e+01 8.6423650045069493e+01 6.4252844241495922e+01
|
|
8 3822 2 1.2370000000000000e-01 6.2089199187020355e+01 8.6309198636296912e+01 6.3711263099850854e+01
|
|
10 1276 2 1.4030000000000001e-01 5.7266131308654970e+01 8.4599328362003035e+01 5.9281511478144402e+01
|
|
11 3822 2 3.5400000000000001e-02 6.1694306618059791e+01 8.3823470438280594e+01 6.3778953909925114e+01
|
|
12 3822 5 -1.8200000000000001e-02 6.3814926998838651e+01 8.3900077798460728e+01 6.4108991789590448e+01
|
|
13 3822 6 -6.9599999999999995e-02 6.2604540882379787e+01 8.3491998603381077e+01 6.3249610918984622e+01
|
|
14 3822 2 1.2370000000000000e-01 6.5739253131027880e+01 8.4813736128157771e+01 6.5351692111169555e+01
|
|
15 3822 1 -1.2900000000000000e-01 6.5071144269009466e+01 8.5646783550482454e+01 6.5086813218945636e+01
|
|
16 3822 1 2.6599999999999999e-02 6.3957099792282079e+01 8.5375816595044753e+01 6.4385073943729708e+01
|
|
17 1 2 5.1600000000000000e-02 6.2256484483973310e+01 8.1576962161157596e+01 6.3963984654065122e+01
|
|
26 3822 2 5.1600000000000000e-02 6.4196825763126355e+01 8.3291442832977836e+01 6.4907094488854057e+01
|
|
29 1276 1 2.6599999999999999e-02 5.8784742332505303e+01 8.2766055380197670e+01 6.1667239692876961e+01
|
|
32 1276 1 -1.2900000000000000e-01 5.7836199787435064e+01 8.3005060229118428e+01 6.2669788306756018e+01
|
|
35 1276 1 -1.2900000000000000e-01 5.8572661840325132e+01 8.3404075689965083e+01 6.0443288532625175e+01
|
|
36 1276 1 -1.7340000000000000e-01 5.7380616699226330e+01 8.4134680429976896e+01 6.0248710539932475e+01
|
|
25 3822 2 3.5400000000000001e-02 6.2750675036816460e+01 8.3891633300878468e+01 6.2249429178485677e+01
|
|
5 3822 2 1.4030000000000001e-01 6.2626160082050376e+01 8.8416565740835182e+01 6.4093918967496805e+01
|
|
1 3822 2 1.2880000000000000e-01 6.4863557606529355e+01 8.9096029197548390e+01 6.5342927535537825e+01
|
|
2 3822 1 -1.1340000000000000e-01 6.4627442641031166e+01 8.8047381925321190e+01 6.5138073202291650e+01
|
|
3 3822 2 1.4030000000000001e-01 6.6470254992065406e+01 8.6991893750821745e+01 6.5857474890608984e+01
|
|
4 3822 1 -1.7340000000000000e-01 6.5416488888088338e+01 8.6963894801200169e+01 6.5357641085394278e+01
|
|
|
|
Velocities
|
|
|
|
44 -1.1274099342391698e-02 2.8614364731871914e-02 7.8116535486555949e-03
|
|
45 2.3164382404151666e-03 3.9815732957733160e-03 -2.9971878581527899e-02
|
|
46 -7.1653099619954563e-03 4.5491360587300133e-04 4.9898614093692017e-03
|
|
48 9.8069086061434527e-03 4.0008139512159270e-03 6.2934259772882122e-03
|
|
47 2.2646445306743783e-03 1.3029071608409702e-03 4.2232440120174040e-02
|
|
18 7.0040064100195757e-03 3.2877451206009701e-03 -3.5376010407568422e-04
|
|
19 -1.3998188760009689e-02 7.2238210565990146e-03 7.7956220633332383e-03
|
|
21 3.1954292320462373e-03 -2.9717583309420764e-03 -3.1753395094325522e-03
|
|
22 5.2997643939121201e-03 -2.9646963088534335e-03 -4.1351926198204894e-03
|
|
23 7.6443400078766528e-03 4.0358953976530103e-02 -2.6684706183248367e-02
|
|
27 1.9261652416455359e-03 -1.1632914130150688e-02 1.0061732021630769e-02
|
|
28 -8.2251676802878315e-03 -1.5111873066969876e-04 1.3808893565582731e-02
|
|
31 5.2475840572179860e-03 1.8266996572138715e-02 2.3453280610166885e-03
|
|
38 -2.0343905130199073e-02 3.2815536859276281e-02 3.6511922534330152e-03
|
|
20 2.2914549087537126e-02 1.4424503744223915e-02 2.1708279654645496e-03
|
|
24 -2.4717233344142471e-03 1.2966123098719246e-02 8.1261459853411936e-03
|
|
37 -2.4547379584186218e-02 -3.0213966592845171e-02 -3.1437442951939183e-02
|
|
39 2.5476117829076835e-03 1.2743160680987653e-03 1.8775880208113892e-03
|
|
40 -6.9216508143939990e-03 1.0986173624795060e-02 8.4543093049661480e-03
|
|
41 -6.9641432145561661e-03 3.4497795547843439e-03 -6.5914679936187716e-03
|
|
42 -1.6682931637687005e-02 -7.9952140358728052e-03 -5.4993265930488526e-02
|
|
43 -1.2747392921213267e-03 -8.9033092043203244e-03 -1.4285400545629027e-02
|
|
9 -4.6235166357676289e-03 -1.3071850427027999e-02 -1.4097407987100977e-02
|
|
30 -1.0949617396609294e-02 2.8255703113196974e-03 1.7171748232322353e-02
|
|
33 -6.1375812469323665e-03 -2.4748644899411924e-03 -9.4761978149296138e-03
|
|
34 1.3676079846441525e-03 5.6076140293943458e-03 4.3217204641336267e-03
|
|
6 -1.0264635053701928e-02 6.5278337056107680e-03 7.0056151148588212e-04
|
|
7 -8.7519451205145676e-03 -4.6476440106580945e-03 2.5970484253527112e-03
|
|
8 2.1377395557690311e-02 -3.3261274153819453e-03 -1.0112266596677577e-02
|
|
10 -3.5793767912309253e-02 -4.7139872292323019e-02 -1.6709528481405608e-02
|
|
11 8.5071485795589590e-03 9.9402848610678270e-03 -3.8088596341056854e-03
|
|
12 -7.1678159384257103e-04 -6.9164463557228907e-04 -6.4073519808107186e-03
|
|
13 -4.8443902657902991e-03 -1.1919190682985097e-03 6.3946846087726637e-03
|
|
14 1.4810157483257907e-02 1.9829623839419017e-03 -2.7393844990063056e-02
|
|
15 2.4171850935506777e-03 8.5003135180758520e-03 -1.4373227798951704e-03
|
|
16 2.7567342910947553e-03 4.7168484476890456e-03 -5.5131873288712992e-03
|
|
17 -3.8456662730386774e-02 2.0220106671151108e-02 -1.3822049134399602e-02
|
|
26 2.7415414728694614e-02 1.4392155257037418e-03 -6.7281635499082748e-03
|
|
29 2.8284983560440745e-03 2.8809942505517976e-03 -9.0489583066552114e-04
|
|
32 -3.8543634697614316e-03 4.6751647301899795e-03 4.2171867397204537e-03
|
|
35 -8.6957974827209118e-03 -4.4615282666186267e-04 -2.6571026120482824e-03
|
|
36 9.4881057996863086e-04 -7.5665878069688429e-03 2.0333670960646154e-03
|
|
25 1.8105924111310519e-02 -8.6933495274689535e-03 -1.9695291360338044e-04
|
|
5 -5.0447438383189585e-03 -4.5665146331657552e-02 1.0653751333175230e-02
|
|
1 -1.7372868398038824e-02 -2.3625357536259349e-03 1.2220266128368908e-02
|
|
2 3.7050246021929395e-03 -1.0236943515935205e-03 7.2206774682170580e-03
|
|
3 2.3669435799326944e-02 2.7891427939155597e-02 -6.7091036888174346e-03
|
|
4 3.4910623999263577e-03 2.6370880132825258e-03 -6.4694788112864129e-03
|
|
|
|
Bonds
|
|
|
|
1 10 44 19
|
|
2 10 45 46
|
|
3 10 48 46
|
|
4 9 19 18
|
|
5 1 21 38
|
|
6 2 21 22
|
|
7 2 21 39
|
|
8 7 22 18
|
|
9 2 22 24
|
|
10 10 23 19
|
|
11 8 27 28
|
|
12 9 28 46
|
|
13 9 28 19
|
|
14 1 24 20
|
|
15 2 24 41
|
|
16 1 39 37
|
|
17 1 40 42
|
|
18 2 40 39
|
|
19 1 41 43
|
|
20 2 41 40
|
|
21 1 33 30
|
|
22 1 34 9
|
|
23 2 34 33
|
|
24 1 6 5
|
|
25 2 6 2
|
|
26 1 7 8
|
|
27 2 7 6
|
|
28 10 11 13
|
|
29 13 12 13
|
|
30 9 13 18
|
|
31 1 15 14
|
|
32 2 15 16
|
|
33 2 15 4
|
|
34 11 16 12
|
|
35 2 16 7
|
|
36 8 17 18
|
|
37 12 26 12
|
|
38 7 29 28
|
|
39 2 29 35
|
|
40 1 32 31
|
|
41 2 32 29
|
|
42 2 32 33
|
|
43 1 35 47
|
|
44 2 35 36
|
|
45 1 36 10
|
|
46 2 36 34
|
|
47 10 25 13
|
|
48 1 2 1
|
|
49 2 2 4
|
|
50 1 4 3
|
|
|
|
Angles
|
|
|
|
1 14 45 46 28
|
|
2 14 48 46 28
|
|
3 15 45 46 48
|
|
4 11 22 18 13
|
|
5 12 17 18 13
|
|
6 13 13 18 19
|
|
7 10 22 18 17
|
|
8 11 22 18 19
|
|
9 12 17 18 19
|
|
10 16 28 19 18
|
|
11 14 44 19 28
|
|
12 14 23 19 28
|
|
13 14 44 19 18
|
|
14 14 23 19 18
|
|
15 15 44 19 23
|
|
16 1 22 21 38
|
|
17 1 39 21 38
|
|
18 2 22 21 39
|
|
19 9 21 22 18
|
|
20 2 21 22 24
|
|
21 9 24 22 18
|
|
22 10 29 28 27
|
|
23 11 29 28 46
|
|
24 11 29 28 19
|
|
25 12 27 28 46
|
|
26 12 27 28 19
|
|
27 13 46 28 19
|
|
28 1 22 24 20
|
|
29 2 22 24 41
|
|
30 1 41 24 20
|
|
31 2 21 39 40
|
|
32 1 21 39 37
|
|
33 1 40 39 37
|
|
34 1 41 40 42
|
|
35 2 41 40 39
|
|
36 1 39 40 42
|
|
37 1 24 41 43
|
|
38 2 24 41 40
|
|
39 1 40 41 43
|
|
40 2 32 33 34
|
|
41 1 32 33 30
|
|
42 1 34 33 30
|
|
43 1 36 34 9
|
|
44 2 36 34 33
|
|
45 1 33 34 9
|
|
46 1 7 6 5
|
|
47 2 7 6 2
|
|
48 1 2 6 5
|
|
49 1 16 7 8
|
|
50 2 16 7 6
|
|
51 1 6 7 8
|
|
52 18 16 12 26
|
|
53 19 16 12 13
|
|
54 20 26 12 13
|
|
55 21 25 13 12
|
|
56 21 11 13 12
|
|
57 22 12 13 18
|
|
58 15 25 13 11
|
|
59 14 25 13 18
|
|
60 14 11 13 18
|
|
61 1 16 15 14
|
|
62 1 4 15 14
|
|
63 2 16 15 4
|
|
64 17 15 16 12
|
|
65 2 15 16 7
|
|
66 17 7 16 12
|
|
67 9 32 29 28
|
|
68 2 32 29 35
|
|
69 9 35 29 28
|
|
70 1 29 32 31
|
|
71 1 33 32 31
|
|
72 2 29 32 33
|
|
73 1 29 35 47
|
|
74 2 29 35 36
|
|
75 1 36 35 47
|
|
76 1 35 36 10
|
|
77 2 35 36 34
|
|
78 1 34 36 10
|
|
79 1 6 2 1
|
|
80 2 6 2 4
|
|
81 1 4 2 1
|
|
82 2 15 4 2
|
|
83 1 15 4 3
|
|
84 1 2 4 3
|
|
|
|
Dihedrals
|
|
|
|
1 34 18 19 28 29
|
|
2 31 44 19 28 29
|
|
3 31 23 19 28 29
|
|
4 35 18 19 28 27
|
|
5 32 44 19 28 27
|
|
6 32 23 19 28 27
|
|
7 36 18 19 28 46
|
|
8 33 44 19 28 46
|
|
9 33 23 19 28 46
|
|
10 36 28 19 18 13
|
|
11 33 44 19 18 13
|
|
12 33 23 19 18 13
|
|
13 34 28 19 18 22
|
|
14 31 44 19 18 22
|
|
15 31 23 19 18 22
|
|
16 35 28 19 18 17
|
|
17 32 44 19 18 17
|
|
18 32 23 19 18 17
|
|
19 10 38 21 22 18
|
|
20 11 39 21 22 18
|
|
21 4 39 21 22 24
|
|
22 5 38 21 39 37
|
|
23 4 22 21 39 40
|
|
24 2 22 21 39 37
|
|
25 2 24 22 21 38
|
|
26 13 21 22 18 13
|
|
27 12 21 22 18 17
|
|
28 13 21 22 18 19
|
|
29 13 24 22 18 13
|
|
30 12 24 22 18 17
|
|
31 13 24 22 18 19
|
|
32 2 21 22 24 20
|
|
33 4 21 22 24 41
|
|
34 14 29 28 46 45
|
|
35 14 29 28 46 48
|
|
36 15 27 28 46 45
|
|
37 15 27 28 46 48
|
|
38 16 19 28 46 45
|
|
39 16 19 28 46 48
|
|
40 10 20 24 22 18
|
|
41 11 41 24 22 18
|
|
42 2 22 24 41 43
|
|
43 4 22 24 41 40
|
|
44 5 20 24 41 43
|
|
45 2 40 39 21 38
|
|
46 2 21 39 40 42
|
|
47 2 39 40 41 43
|
|
48 4 41 40 39 21
|
|
49 2 41 40 39 37
|
|
50 5 42 40 39 37
|
|
51 2 40 41 24 20
|
|
52 2 24 41 40 42
|
|
53 4 24 41 40 39
|
|
54 5 43 41 40 42
|
|
55 2 34 33 32 31
|
|
56 2 32 33 34 9
|
|
57 2 33 34 36 10
|
|
58 4 36 34 33 32
|
|
59 2 36 34 33 30
|
|
60 5 9 34 33 30
|
|
61 2 2 6 7 8
|
|
62 2 7 6 2 1
|
|
63 4 7 6 2 4
|
|
64 5 5 6 2 1
|
|
65 20 8 7 16 12
|
|
66 21 6 7 16 12
|
|
67 2 16 7 6 5
|
|
68 4 16 7 6 2
|
|
69 5 8 7 6 5
|
|
70 24 16 12 13 25
|
|
71 24 16 12 13 11
|
|
72 25 16 12 13 18
|
|
73 26 26 12 13 25
|
|
74 26 26 12 13 11
|
|
75 27 26 12 13 18
|
|
76 28 12 13 18 22
|
|
77 29 12 13 18 17
|
|
78 30 12 13 18 19
|
|
79 31 25 13 18 22
|
|
80 32 25 13 18 17
|
|
81 33 25 13 18 19
|
|
82 31 11 13 18 22
|
|
83 32 11 13 18 17
|
|
84 33 11 13 18 19
|
|
85 20 14 15 16 12
|
|
86 21 4 15 16 12
|
|
87 4 4 15 16 7
|
|
88 5 14 15 4 3
|
|
89 4 16 15 4 2
|
|
90 2 16 15 4 3
|
|
91 2 7 16 15 14
|
|
92 22 15 16 12 26
|
|
93 23 15 16 12 13
|
|
94 22 7 16 12 26
|
|
95 23 7 16 12 13
|
|
96 2 15 16 7 8
|
|
97 4 15 16 7 6
|
|
98 2 35 29 32 31
|
|
99 12 32 29 28 27
|
|
100 13 32 29 28 46
|
|
101 13 32 29 28 19
|
|
102 12 35 29 28 27
|
|
103 13 35 29 28 46
|
|
104 13 35 29 28 19
|
|
105 2 32 29 35 47
|
|
106 4 32 29 35 36
|
|
107 10 31 32 29 28
|
|
108 11 33 32 29 28
|
|
109 4 33 32 29 35
|
|
110 5 31 32 33 30
|
|
111 4 29 32 33 34
|
|
112 2 29 32 33 30
|
|
113 10 47 35 29 28
|
|
114 11 36 35 29 28
|
|
115 2 29 35 36 10
|
|
116 4 29 35 36 34
|
|
117 5 47 35 36 10
|
|
118 2 34 36 35 47
|
|
119 2 35 36 34 9
|
|
120 4 35 36 34 33
|
|
121 5 10 36 34 9
|
|
122 2 4 2 6 5
|
|
123 4 6 2 4 15
|
|
124 2 6 2 4 3
|
|
125 5 1 2 4 3
|
|
126 2 2 4 15 14
|
|
127 2 15 4 2 1
|
|
|
|
Impropers
|
|
|
|
1 6 45 46 48 28
|
|
2 1 22 18 17 13
|
|
3 1 22 18 13 19
|
|
4 1 17 18 13 19
|
|
5 1 22 18 17 19
|
|
6 1 44 19 18 28
|
|
7 1 23 19 18 28
|
|
8 1 44 19 23 28
|
|
9 1 44 19 23 18
|
|
10 1 22 21 39 38
|
|
11 5 21 22 24 18
|
|
12 1 29 28 27 46
|
|
13 1 29 28 27 19
|
|
14 1 29 28 46 19
|
|
15 1 27 28 46 19
|
|
16 1 22 24 41 20
|
|
17 1 21 39 40 37
|
|
18 1 41 40 39 42
|
|
19 1 24 41 40 43
|
|
20 1 32 33 34 30
|
|
21 1 36 34 33 9
|
|
22 1 7 6 2 5
|
|
23 1 16 7 6 8
|
|
24 9 16 12 26 13
|
|
25 1 25 13 11 12
|
|
26 1 25 13 12 18
|
|
27 1 11 13 12 18
|
|
28 1 25 13 11 18
|
|
29 1 16 15 4 14
|
|
30 8 15 16 7 12
|
|
31 5 32 29 35 28
|
|
32 1 29 32 33 31
|
|
33 1 29 35 36 47
|
|
34 1 35 36 34 10
|
|
35 1 6 2 4 1
|
|
36 1 15 4 2 3
|