Files
lammps/lib/gpu/geryon/nvd_device.h
Ben Menadue 294a1c2168 Use primary context in CUDA GPU code.
Since LAMMPS uses the low-level driver API of CUDA, it needs to ensure
that it is in the correct context when invoking such functions. At the
moment it creates and switches to its own context inside `UCL_Device::set`
but then assumes that the driver is still in that context for subsequent
calls into CUDA; if another part of the program uses a different context
(such as the CUDA runtime using the "primary" context) this will cause
failures inside LAMMPS.

This patch changes the context creation to instead use the primary
context for the requested device. While it's not perfect, in that it
still doesn't ensure that it's in the correct context before making
driver API calls, it at least allows it to work with libraries that use
the runtime API.
2022-09-06 09:28:51 +10:00

513 lines
20 KiB
C++

/***************************************************************************
nvd_device.h
-------------------
W. Michael Brown
Utilities for dealing with cuda devices
__________________________________________________________________________
This file is part of the Geryon Unified Coprocessor Library (UCL)
__________________________________________________________________________
begin : Thu Jan 21 2010
copyright : (C) 2010 by W. Michael Brown
email : brownw@ornl.gov
***************************************************************************/
/* -----------------------------------------------------------------------
Copyright (2009) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the Simplified BSD License.
----------------------------------------------------------------------- */
#ifndef NVD_DEVICE
#define NVD_DEVICE
#include <string>
#include <vector>
#include <iostream>
#include "nvd_macros.h"
#include "ucl_types.h"
namespace ucl_cudadr {
// --------------------------------------------------------------------------
// - COMMAND QUEUE STUFF
// --------------------------------------------------------------------------
typedef CUstream command_queue;
inline void ucl_flush(command_queue &cq) {}
inline void ucl_sync(CUstream &stream) {
CU_SAFE_CALL(cuStreamSynchronize(stream));
}
struct NVDProperties {
int device_id;
std::string name;
int major;
int minor;
CUDA_INT_TYPE totalGlobalMem;
int multiProcessorCount;
int maxThreadsPerBlock;
int maxThreadsDim[3];
int maxGridSize[3];
int sharedMemPerBlock;
int totalConstantMemory;
int SIMDWidth;
int memPitch;
int regsPerBlock;
int clockRate;
int textureAlign;
int kernelExecTimeoutEnabled;
int integrated;
int canMapHostMemory;
int concurrentKernels;
int ECCEnabled;
int computeMode;
};
/// Class for looking at device properties
/** \note Calls to change the device outside of the class results in incorrect
* behavior
* \note There is no error checking for indexing past the number of devices **/
class UCL_Device {
public:
/// Collect properties for every GPU on the node
/** \note You must set the active GPU with set() before using the device **/
inline UCL_Device();
inline ~UCL_Device();
/// Returns 1 (For compatibility with OpenCL)
inline int num_platforms() { return 1; }
/// Return a string with name and info of the current platform
inline std::string platform_name()
{ return "NVIDIA Corporation NVIDIA CUDA Driver"; }
/// Delete any contexts/data and set the platform number to be used
inline int set_platform(const int pid);
/// Return the number of devices that support CUDA
inline int num_devices() { return _properties.size(); }
/// Set the CUDA device to the specified device number
/** A context and default command queue will be created for the device
* Returns UCL_SUCCESS if successful or UCL_ERROR if the device could not
* be allocated for use. clear() is called to delete any contexts and
* associated data from previous calls to set(). **/
inline int set(int num);
/// Delete any context and associated data stored from a call to set()
inline void clear();
/// Get the current device number
inline int device_num() { return _device; }
/// Returns the default stream for the current device
inline command_queue & cq() { return cq(0); }
/// Returns the stream indexed by i
inline command_queue & cq(const int i) { return _cq[i]; }
/// Block until all commands in the default stream have completed
inline void sync() { sync(0); }
/// Block until all commands in the specified stream have completed
inline void sync(const int i) { ucl_sync(cq(i)); }
/// Get the number of command queues currently available on device
inline int num_queues()
{ return _cq.size(); }
/// Add a stream for device computations
inline void push_command_queue() {
_cq.push_back(CUstream());
CU_SAFE_CALL(cuStreamCreate(&_cq.back(),0));
}
/// Remove a stream for device computations
/** \note You cannot delete the default stream **/
inline void pop_command_queue() {
if (_cq.size()<2) return;
CU_SAFE_CALL_NS(cuStreamDestroy(_cq.back()));
_cq.pop_back();
}
/// Set the default command queue (by default this is the null stream)
/** \param i index of the command queue (as added by push_command_queue())
If i is 0, the default command queue is set to the null stream **/
inline void set_command_queue(const int i) {
if (i==0) _cq[0]=0;
else _cq[0]=_cq[i];
}
/// Get the current CUDA device name
inline std::string name() { return name(_device); }
/// Get the CUDA device name
inline std::string name(const int i)
{ return std::string(_properties[i].name); }
/// Get a string telling the type of the current device
inline std::string device_type_name() { return device_type_name(_device); }
/// Get a string telling the type of the device
inline std::string device_type_name(const int i) { return "GPU"; }
/// Get current device type (UCL_CPU, UCL_GPU, UCL_ACCELERATOR, UCL_DEFAULT)
inline enum UCL_DEVICE_TYPE device_type() { return device_type(_device); }
/// Get device type (UCL_CPU, UCL_GPU, UCL_ACCELERATOR, UCL_DEFAULT)
inline enum UCL_DEVICE_TYPE device_type(const int i) { return UCL_GPU; }
/// Returns true if host memory is efficiently addressable from device
inline bool shared_memory() { return shared_memory(_device); }
/// Returns true if host memory is efficiently addressable from device
inline bool shared_memory(const int i) { return device_type(i)==UCL_CPU; }
/// Returns preferred vector width
inline int preferred_fp32_width() { return preferred_fp32_width(_device); }
/// Returns preferred vector width
inline int preferred_fp32_width(const int i)
{return _properties[i].SIMDWidth;}
/// Returns preferred vector width
inline int preferred_fp64_width() { return preferred_fp64_width(_device); }
/// Returns preferred vector width
inline int preferred_fp64_width(const int i)
{return _properties[i].SIMDWidth;}
/// Returns true if double precision is support for the current device
inline bool double_precision() { return double_precision(_device); }
/// Returns true if double precision is support for the device
inline bool double_precision(const int i) {return arch(i)>=1.3;}
/// Get the number of compute units on the current device
inline unsigned cus() { return cus(_device); }
/// Get the number of compute units
inline unsigned cus(const int i)
{ return _properties[i].multiProcessorCount; }
/// Get the number of cores in the current device
inline unsigned cores() { return cores(_device); }
/// Get the number of cores
inline unsigned cores(const int i)
{ if (arch(i)<2.0) return _properties[i].multiProcessorCount*8;
else if (arch(i)<2.1) return _properties[i].multiProcessorCount*32;
else if (arch(i)<3.0) return _properties[i].multiProcessorCount*48;
else return _properties[i].multiProcessorCount*192; }
/// Get the gigabytes of global memory in the current device
inline double gigabytes() { return gigabytes(_device); }
/// Get the gigabytes of global memory
inline double gigabytes(const int i)
{ return static_cast<double>(_properties[i].totalGlobalMem)/1073741824; }
/// Get the bytes of global memory in the current device
inline size_t bytes() { return bytes(_device); }
/// Get the bytes of global memory
inline size_t bytes(const int i) { return _properties[i].totalGlobalMem; }
// Get the gigabytes of free memory in the current device
inline double free_gigabytes() { return free_gigabytes(_device); }
// Get the gigabytes of free memory
inline double free_gigabytes(const int i)
{ return static_cast<double>(free_bytes(i))/1073741824; }
// Get the bytes of free memory in the current device
inline size_t free_bytes() { return free_bytes(_device); }
// Get the bytes of free memory
inline size_t free_bytes(const int i) {
CUDA_INT_TYPE dfree, dtotal;
CU_SAFE_CALL_NS(cuMemGetInfo(&dfree, &dtotal));
return static_cast<size_t>(dfree);
}
/// Return the GPGPU compute capability for current device
inline double arch() { return arch(_device); }
/// Return the GPGPU compute capability
inline double arch(const int i)
{ return static_cast<double>(_properties[i].minor)/10+_properties[i].major;}
/// Clock rate in GHz for current device
inline double clock_rate() { return clock_rate(_device); }
/// Clock rate in GHz
inline double clock_rate(const int i)
{ return _properties[i].clockRate*1e-6;}
/// Get the maximum number of threads per block
inline size_t group_size() { return group_size(_device); }
/// Get the maximum number of threads per block
inline size_t group_size(const int i)
{ return _properties[i].maxThreadsPerBlock; }
/// Get the maximum number of threads per block in dimension 'dim'
inline size_t group_size_dim(const int dim)
{ return group_size_dim(_device, dim); }
/// Get the maximum number of threads per block in dimension 'dim'
inline size_t group_size_dim(const int i, const int dim)
{ return _properties[i].maxThreadsDim[dim]; }
/// Get the shared local memory size in bytes
inline size_t slm_size() { return slm_size(_device); }
/// Get the shared local memory size in bytes
inline size_t slm_size(const int i)
{ return _properties[i].sharedMemPerBlock; }
/// Return the maximum memory pitch in bytes for current device
inline size_t max_pitch() { return max_pitch(_device); }
/// Return the maximum memory pitch in bytes
inline size_t max_pitch(const int i) { return _properties[i].memPitch; }
/// Returns false if accelerator cannot be shared by multiple processes
/** If it cannot be determined, true is returned **/
inline bool sharing_supported() { return sharing_supported(_device); }
/// Returns false if accelerator cannot be shared by multiple processes
/** If it cannot be determined, true is returned **/
inline bool sharing_supported(const int i)
{ return (_properties[i].computeMode == CU_COMPUTEMODE_DEFAULT); }
/// True if splitting device into equal subdevices supported
inline bool fission_equal()
{ return fission_equal(_device); }
/// True if splitting device into equal subdevices supported
inline bool fission_equal(const int i)
{ return false; }
/// True if splitting device into subdevices by specified counts supported
inline bool fission_by_counts()
{ return fission_by_counts(_device); }
/// True if splitting device into subdevices by specified counts supported
inline bool fission_by_counts(const int i)
{ return false; }
/// True if splitting device into subdevices by affinity domains supported
inline bool fission_by_affinity()
{ return fission_by_affinity(_device); }
/// True if splitting device into subdevices by affinity domains supported
inline bool fission_by_affinity(const int i)
{ return false; }
/// Maximum number of subdevices allowed from device fission
inline int max_sub_devices()
{ return max_sub_devices(_device); }
/// Maximum number of subdevices allowed from device fission
inline int max_sub_devices(const int i)
{ return 0; }
/// True if the device supports shuffle intrinsics
inline bool has_shuffle_support()
{ return has_shuffle_support(_device); }
/// True if the device supports shuffle intrinsics
inline bool has_shuffle_support(const int i)
{ return arch(i)>=3.0; }
/// List all devices along with all properties
inline void print_all(std::ostream &out);
/// For compatability with OCL API
inline int auto_set_platform(const enum UCL_DEVICE_TYPE type=UCL_GPU,
const std::string vendor="",
const int ndevices=-1,
const int first_device=-1)
{ return set_platform(0); }
private:
int _device, _num_devices;
std::vector<NVDProperties> _properties;
std::vector<CUstream> _cq;
CUdevice _cu_device;
CUcontext _context;
CUcontext _old_context;
};
// Grabs the properties for all devices
UCL_Device::UCL_Device() {
#if CUDA_VERSION < 8000
#error CUDA Toolkit version 8 or later required
#endif
CU_SAFE_CALL_NS(cuInit(0));
CU_SAFE_CALL_NS(cuDeviceGetCount(&_num_devices));
for (int i=0; i<_num_devices; ++i) {
CUdevice dev;
CU_SAFE_CALL_NS(cuDeviceGet(&dev,i));
int major, minor;
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, dev));
if (major==9999)
continue;
NVDProperties prop;
prop.device_id = i;
prop.major=major;
prop.minor=minor;
char namecstr[1024];
CU_SAFE_CALL_NS(cuDeviceGetName(namecstr,1024,dev));
prop.name=namecstr;
CU_SAFE_CALL_NS(cuDeviceTotalMem(&prop.totalGlobalMem,dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.multiProcessorCount, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.maxThreadsPerBlock, CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.maxThreadsDim[0], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.maxThreadsDim[1], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.maxThreadsDim[2], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.maxGridSize[0], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.maxGridSize[1], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.maxGridSize[2], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.sharedMemPerBlock, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.totalConstantMemory, CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.SIMDWidth, CU_DEVICE_ATTRIBUTE_WARP_SIZE, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.memPitch, CU_DEVICE_ATTRIBUTE_MAX_PITCH, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.regsPerBlock, CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.clockRate, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.textureAlign, CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.kernelExecTimeoutEnabled, CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT,dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.integrated, CU_DEVICE_ATTRIBUTE_INTEGRATED, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.canMapHostMemory, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.computeMode, CU_DEVICE_ATTRIBUTE_COMPUTE_MODE,dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.concurrentKernels, CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.ECCEnabled, CU_DEVICE_ATTRIBUTE_ECC_ENABLED, dev));
_properties.push_back(prop);
}
_device=-1;
_cq.push_back(CUstream());
_cq.back()=0;
}
UCL_Device::~UCL_Device() {
clear();
}
int UCL_Device::set_platform(const int pid) {
clear();
#ifdef UCL_DEBUG
assert(pid<num_platforms());
#endif
return UCL_SUCCESS;
}
// Set the CUDA device to the specified device number
int UCL_Device::set(int num) {
clear();
_device=_properties[num].device_id;
CU_SAFE_CALL_NS(cuCtxGetCurrent(&_old_context));
CU_SAFE_CALL_NS(cuDeviceGet(&_cu_device,_device));
CUresult err=cuDevicePrimaryCtxRetain(&_context,_cu_device);
if (err!=CUDA_SUCCESS) {
#ifndef UCL_NO_EXIT
std::cerr << "UCL Error: Could not access accelerator number " << num
<< " for use.\n";
UCL_GERYON_EXIT;
#endif
return UCL_ERROR;
}
if (_context != _old_context) {
CU_SAFE_CALL_NS(cuCtxSetCurrent(_context));
}
return UCL_SUCCESS;
}
void UCL_Device::clear() {
if (_device>-1) {
for (int i=1; i<num_queues(); i++) pop_command_queue();
CU_SAFE_CALL_NS(cuCtxSetCurrent(_old_context));
CU_SAFE_CALL_NS(cuDevicePrimaryCtxRelease(_cu_device));
}
_device=-1;
}
// List all devices along with all properties
void UCL_Device::print_all(std::ostream &out) {
int driver_version;
cuDriverGetVersion(&driver_version);
out << "CUDA Driver Version: "
<< driver_version/1000 << "." << driver_version%100 << std::endl;
if (num_devices() == 0)
out << "There is no device supporting CUDA\n";
for (int i=0; i<num_devices(); ++i) {
out << "\nDevice " << i << ": \"" << name(i) << "\"\n";
out << " Type of device: "
<< device_type_name(i).c_str() << std::endl;
out << " Compute capability: "
<< arch(i) << std::endl;
out << " Double precision support: ";
if (double_precision(i))
out << "Yes\n";
else
out << "No\n";
out << " Total amount of global memory: "
<< gigabytes(i) << " GB\n";
out << " Number of compute units/multiprocessors: "
<< _properties[i].multiProcessorCount << std::endl;
out << " Number of cores: "
<< cores(i) << std::endl;
out << " Total amount of constant memory: "
<< _properties[i].totalConstantMemory << " bytes\n";
out << " Total amount of local/shared memory per block: "
<< _properties[i].sharedMemPerBlock << " bytes\n";
out << " Total number of registers available per block: "
<< _properties[i].regsPerBlock << std::endl;
out << " Warp size: "
<< _properties[i].SIMDWidth << std::endl;
out << " Maximum number of threads per block: "
<< _properties[i].maxThreadsPerBlock << std::endl;
out << " Maximum group size (# of threads per block) "
<< _properties[i].maxThreadsDim[0] << " x "
<< _properties[i].maxThreadsDim[1] << " x "
<< _properties[i].maxThreadsDim[2] << std::endl;
out << " Maximum item sizes (# threads for each dim) "
<< _properties[i].maxGridSize[0] << " x "
<< _properties[i].maxGridSize[1] << " x "
<< _properties[i].maxGridSize[2] << std::endl;
out << " Maximum memory pitch: "
<< max_pitch(i) << " bytes\n";
out << " Texture alignment: "
<< _properties[i].textureAlign << " bytes\n";
out << " Clock rate: "
<< clock_rate(i) << " GHz\n";
out << " Run time limit on kernels: ";
if (_properties[i].kernelExecTimeoutEnabled)
out << "Yes\n";
else
out << "No\n";
out << " Integrated: ";
if (_properties[i].integrated)
out << "Yes\n";
else
out << "No\n";
out << " Support host page-locked memory mapping: ";
if (_properties[i].canMapHostMemory)
out << "Yes\n";
else
out << "No\n";
out << " Compute mode: ";
if (_properties[i].computeMode == CU_COMPUTEMODE_DEFAULT)
out << "Default\n"; // multiple threads can use device
else if (_properties[i].computeMode == CU_COMPUTEMODE_EXCLUSIVE_PROCESS)
out << "Exclusive\n"; // only thread can use device
else if (_properties[i].computeMode == CU_COMPUTEMODE_PROHIBITED)
out << "Prohibited\n"; // no thread can use device
else if (_properties[i].computeMode == CU_COMPUTEMODE_EXCLUSIVE_PROCESS)
out << "Exclusive Process\n"; // multiple threads 1 process
else
out << "Unknown\n";
out << " Concurrent kernel execution: ";
if (_properties[i].concurrentKernels)
out << "Yes\n";
else
out << "No\n";
out << " Device has ECC support enabled: ";
if (_properties[i].ECCEnabled)
out << "Yes\n";
else
out << "No\n";
}
}
}
#endif