Files
lammps/lib/colvars/colvarcomp_gpath.cpp
2021-08-03 18:03:18 -04:00

907 lines
44 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#if (__cplusplus >= 201103L)
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/Colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#include <numeric>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <limits>
#include "colvarmodule.h"
#include "colvarvalue.h"
#include "colvarparse.h"
#include "colvar.h"
#include "colvarcomp.h"
bool compareColvarComponent(colvar::cvc *i, colvar::cvc *j)
{
return i->name < j->name;
}
colvar::CartesianBasedPath::CartesianBasedPath(std::string const &conf): cvc(conf), atoms(nullptr), reference_frames(0) {
// Parse selected atoms
atoms = parse_group(conf, "atoms");
has_user_defined_fitting = false;
std::string fitting_conf;
if (key_lookup(conf, "fittingAtoms", &fitting_conf)) {
has_user_defined_fitting = true;
}
// Lookup reference column of PDB
// Copied from the RMSD class
std::string reference_column;
double reference_column_value;
if (get_keyval(conf, "refPositionsCol", reference_column, std::string(""))) {
bool found = get_keyval(conf, "refPositionsColValue", reference_column_value, 0.0);
if (found && reference_column_value == 0.0) {
cvm::error("Error: refPositionsColValue, "
"if provided, must be non-zero.\n");
return;
}
}
// Lookup all reference frames
bool has_frames = true;
total_reference_frames = 0;
while (has_frames) {
std::string reference_position_file_lookup = "refPositionsFile" + cvm::to_str(total_reference_frames + 1);
if (key_lookup(conf, reference_position_file_lookup.c_str())) {
std::string reference_position_filename;
get_keyval(conf, reference_position_file_lookup.c_str(), reference_position_filename, std::string(""));
std::vector<cvm::atom_pos> reference_position(atoms->size());
cvm::load_coords(reference_position_filename.c_str(), &reference_position, atoms, reference_column, reference_column_value);
reference_frames.push_back(reference_position);
++total_reference_frames;
} else {
has_frames = false;
}
}
// Setup alignment to compute RMSD with respect to reference frames
for (size_t i_frame = 0; i_frame < reference_frames.size(); ++i_frame) {
cvm::atom_group* tmp_atoms = parse_group(conf, "atoms");
if (!has_user_defined_fitting) {
// Swipe from the rmsd class
tmp_atoms->enable(f_ag_center);
tmp_atoms->enable(f_ag_rotate);
tmp_atoms->ref_pos = reference_frames[i_frame];
tmp_atoms->center_ref_pos();
tmp_atoms->enable(f_ag_fit_gradients);
tmp_atoms->rot.request_group1_gradients(tmp_atoms->size());
tmp_atoms->rot.request_group2_gradients(tmp_atoms->size());
comp_atoms.push_back(tmp_atoms);
} else {
// parse a group of atoms for fitting
std::string fitting_group_name = std::string("fittingAtoms") + cvm::to_str(i_frame);
cvm::atom_group* tmp_fitting_atoms = new cvm::atom_group(fitting_group_name.c_str());
tmp_fitting_atoms->parse(fitting_conf);
tmp_fitting_atoms->disable(f_ag_scalable);
tmp_fitting_atoms->disable(f_ag_scalable_com);
tmp_fitting_atoms->fit_gradients.assign(tmp_fitting_atoms->size(), cvm::atom_pos(0.0, 0.0, 0.0));
std::string reference_position_file_lookup = "refPositionsFile" + cvm::to_str(i_frame + 1);
std::string reference_position_filename;
get_keyval(conf, reference_position_file_lookup.c_str(), reference_position_filename, std::string(""));
std::vector<cvm::atom_pos> reference_fitting_position(tmp_fitting_atoms->size());
cvm::load_coords(reference_position_filename.c_str(), &reference_fitting_position, tmp_fitting_atoms, reference_column, reference_column_value);
// setup the atom group for calculating
tmp_atoms->enable(f_ag_center);
tmp_atoms->enable(f_ag_rotate);
tmp_atoms->b_user_defined_fit = true;
tmp_atoms->disable(f_ag_scalable);
tmp_atoms->disable(f_ag_scalable_com);
tmp_atoms->ref_pos = reference_fitting_position;
tmp_atoms->center_ref_pos();
tmp_atoms->enable(f_ag_fit_gradients);
tmp_atoms->enable(f_ag_fitting_group);
tmp_atoms->fitting_group = tmp_fitting_atoms;
tmp_atoms->rot.request_group1_gradients(tmp_fitting_atoms->size());
tmp_atoms->rot.request_group2_gradients(tmp_fitting_atoms->size());
reference_fitting_frames.push_back(reference_fitting_position);
comp_atoms.push_back(tmp_atoms);
}
}
x.type(colvarvalue::type_scalar);
// Don't use implicit gradient
enable(f_cvc_explicit_gradient);
}
colvar::CartesianBasedPath::~CartesianBasedPath() {
for (auto it_comp_atoms = comp_atoms.begin(); it_comp_atoms != comp_atoms.end(); ++it_comp_atoms) {
if (*it_comp_atoms != nullptr) {
delete (*it_comp_atoms);
(*it_comp_atoms) = nullptr;
}
}
atom_groups.clear();
}
void colvar::CartesianBasedPath::computeDistanceToReferenceFrames(std::vector<cvm::real>& result) {
for (size_t i_frame = 0; i_frame < reference_frames.size(); ++i_frame) {
cvm::real frame_rmsd = 0.0;
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
frame_rmsd += ((*(comp_atoms[i_frame]))[i_atom].pos - reference_frames[i_frame][i_atom]).norm2();
}
frame_rmsd /= cvm::real(atoms->size());
frame_rmsd = cvm::sqrt(frame_rmsd);
result[i_frame] = frame_rmsd;
}
}
colvar::gspath::gspath(std::string const &conf): CartesianBasedPath(conf) {
function_type = "gspath";
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
if (use_second_closest_frame == true) {
cvm::log(std::string("Geometric path s(σ) will use the second closest frame to compute s_(m-1)\n"));
} else {
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m-1)\n"));
}
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
if (use_third_closest_frame == true) {
cvm::log(std::string("Geometric path s(σ) will use the third closest frame to compute s_(m+1)\n"));
} else {
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m+1)\n"));
}
if (total_reference_frames < 2) {
cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) + " reference frames, but gspath requires at least 2 frames.\n");
}
GeometricPathCV::GeometricPathBase<cvm::atom_pos, cvm::real, GeometricPathCV::path_sz::S>::initialize(atoms->size(), cvm::atom_pos(), total_reference_frames, use_second_closest_frame, use_third_closest_frame);
cvm::log(std::string("Geometric pathCV(s) is initialized.\n"));
cvm::log(std::string("Geometric pathCV(s) loaded ") + cvm::to_str(reference_frames.size()) + std::string(" frames.\n"));
}
void colvar::gspath::updateDistanceToReferenceFrames() {
computeDistanceToReferenceFrames(frame_distances);
}
void colvar::gspath::prepareVectors() {
size_t i_atom;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
// v1 = s_m - z
v1[i_atom] = reference_frames[min_frame_index_1][i_atom] - (*(comp_atoms[min_frame_index_1]))[i_atom].pos;
// v2 = z - s_(m-1)
v2[i_atom] = (*(comp_atoms[min_frame_index_2]))[i_atom].pos - reference_frames[min_frame_index_2][i_atom];
}
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
cvm::atom_pos reference_cog_1, reference_cog_2;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
reference_cog_1 += reference_frames[min_frame_index_1][i_atom];
reference_cog_2 += reference_frames[min_frame_index_2][i_atom];
}
reference_cog_1 /= reference_frames[min_frame_index_1].size();
reference_cog_2 /= reference_frames[min_frame_index_2].size();
std::vector<cvm::atom_pos> tmp_reference_frame_1(reference_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_frame_2(reference_frames[min_frame_index_2].size());
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_reference_frame_1[i_atom] = reference_frames[min_frame_index_1][i_atom] - reference_cog_1;
tmp_reference_frame_2[i_atom] = reference_frames[min_frame_index_2][i_atom] - reference_cog_2;
}
if (has_user_defined_fitting) {
cvm::atom_pos reference_fitting_cog_1, reference_fitting_cog_2;
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
reference_fitting_cog_1 += reference_fitting_frames[min_frame_index_1][i_atom];
reference_fitting_cog_2 += reference_fitting_frames[min_frame_index_2][i_atom];
}
reference_fitting_cog_1 /= reference_fitting_frames[min_frame_index_1].size();
reference_fitting_cog_2 /= reference_fitting_frames[min_frame_index_2].size();
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_1(reference_fitting_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_2(reference_fitting_frames[min_frame_index_2].size());
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
tmp_reference_fitting_frame_1[i_atom] = reference_fitting_frames[min_frame_index_1][i_atom] - reference_fitting_cog_1;
tmp_reference_fitting_frame_2[i_atom] = reference_fitting_frames[min_frame_index_2][i_atom] - reference_fitting_cog_2;
}
rot_v3.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_2);
} else {
rot_v3.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_2);
}
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
v3[i_atom] = rot_v3.q.rotate(tmp_reference_frame_1[i_atom]) - tmp_reference_frame_2[i_atom];
}
} else {
cvm::atom_pos reference_cog_1, reference_cog_3;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
reference_cog_1 += reference_frames[min_frame_index_1][i_atom];
reference_cog_3 += reference_frames[min_frame_index_3][i_atom];
}
reference_cog_1 /= reference_frames[min_frame_index_1].size();
reference_cog_3 /= reference_frames[min_frame_index_3].size();
std::vector<cvm::atom_pos> tmp_reference_frame_1(reference_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_frame_3(reference_frames[min_frame_index_3].size());
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_reference_frame_1[i_atom] = reference_frames[min_frame_index_1][i_atom] - reference_cog_1;
tmp_reference_frame_3[i_atom] = reference_frames[min_frame_index_3][i_atom] - reference_cog_3;
}
if (has_user_defined_fitting) {
cvm::atom_pos reference_fitting_cog_1, reference_fitting_cog_3;
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
reference_fitting_cog_1 += reference_fitting_frames[min_frame_index_1][i_atom];
reference_fitting_cog_3 += reference_fitting_frames[min_frame_index_3][i_atom];
}
reference_fitting_cog_1 /= reference_fitting_frames[min_frame_index_1].size();
reference_fitting_cog_3 /= reference_fitting_frames[min_frame_index_3].size();
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_1(reference_fitting_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_3(reference_fitting_frames[min_frame_index_3].size());
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
tmp_reference_fitting_frame_1[i_atom] = reference_fitting_frames[min_frame_index_1][i_atom] - reference_fitting_cog_1;
tmp_reference_fitting_frame_3[i_atom] = reference_fitting_frames[min_frame_index_3][i_atom] - reference_fitting_cog_3;
}
rot_v3.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_3);
} else {
rot_v3.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_3);
}
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
// v3 = s_(m+1) - s_m
v3[i_atom] = tmp_reference_frame_3[i_atom] - rot_v3.q.rotate(tmp_reference_frame_1[i_atom]);
}
}
}
void colvar::gspath::calc_value() {
computeValue();
x = s;
}
void colvar::gspath::calc_gradients() {
computeDerivatives();
cvm::rvector tmp_atom_grad_v1, tmp_atom_grad_v2;
// dS(v1, v2(r), v3) / dr = ∂S/∂v1 * dv1/dr + ∂S/∂v2 * dv2/dr
// dv1/dr = [fitting matrix 1][-1, ..., -1]
// dv2/dr = [fitting matrix 2][1, ..., 1]
// ∂S/∂v1 = ± (∂f/∂v1) / (2M)
// ∂S/∂v2 = ± (∂f/∂v2) / (2M)
// dS(v1, v2(r), v3) / dr = -1.0 * ± (∂f/∂v1) / (2M) + ± (∂f/∂v2) / (2M)
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_atom_grad_v1[0] = -1.0 * sign * 0.5 * dfdv1[i_atom][0] / M;
tmp_atom_grad_v1[1] = -1.0 * sign * 0.5 * dfdv1[i_atom][1] / M;
tmp_atom_grad_v1[2] = -1.0 * sign * 0.5 * dfdv1[i_atom][2] / M;
tmp_atom_grad_v2[0] = sign * 0.5 * dfdv2[i_atom][0] / M;
tmp_atom_grad_v2[1] = sign * 0.5 * dfdv2[i_atom][1] / M;
tmp_atom_grad_v2[2] = sign * 0.5 * dfdv2[i_atom][2] / M;
(*(comp_atoms[min_frame_index_1]))[i_atom].grad += tmp_atom_grad_v1;
(*(comp_atoms[min_frame_index_2]))[i_atom].grad += tmp_atom_grad_v2;
}
}
void colvar::gspath::apply_force(colvarvalue const &force) {
// The force applied to this CV is scalar type
cvm::real const &F = force.real_value;
(*(comp_atoms[min_frame_index_1])).apply_colvar_force(F);
(*(comp_atoms[min_frame_index_2])).apply_colvar_force(F);
}
colvar::gzpath::gzpath(std::string const &conf): CartesianBasedPath(conf) {
function_type = "gzpath";
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
if (use_second_closest_frame == true) {
cvm::log(std::string("Geometric path z(σ) will use the second closest frame to compute s_(m-1)\n"));
} else {
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m-1)\n"));
}
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
if (use_third_closest_frame == true) {
cvm::log(std::string("Geometric path z(σ) will use the third closest frame to compute s_(m+1)\n"));
} else {
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m+1)\n"));
}
bool b_use_z_square = false;
get_keyval(conf, "useZsquare", b_use_z_square, false);
if (b_use_z_square == true) {
cvm::log(std::string("Geometric path z(σ) will use the square of distance from current frame to path compute z\n"));
}
if (total_reference_frames < 2) {
cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) + " reference frames, but gzpath requires at least 2 frames.\n");
}
GeometricPathCV::GeometricPathBase<cvm::atom_pos, cvm::real, GeometricPathCV::path_sz::Z>::initialize(atoms->size(), cvm::atom_pos(), total_reference_frames, use_second_closest_frame, use_third_closest_frame, b_use_z_square);
// Logging
cvm::log(std::string("Geometric pathCV(z) is initialized.\n"));
cvm::log(std::string("Geometric pathCV(z) loaded ") + cvm::to_str(reference_frames.size()) + std::string(" frames.\n"));
}
void colvar::gzpath::updateDistanceToReferenceFrames() {
computeDistanceToReferenceFrames(frame_distances);
}
void colvar::gzpath::prepareVectors() {
cvm::atom_pos reference_cog_1, reference_cog_2;
size_t i_atom;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
reference_cog_1 += reference_frames[min_frame_index_1][i_atom];
reference_cog_2 += reference_frames[min_frame_index_2][i_atom];
}
reference_cog_1 /= reference_frames[min_frame_index_1].size();
reference_cog_2 /= reference_frames[min_frame_index_2].size();
std::vector<cvm::atom_pos> tmp_reference_frame_1(reference_frames[min_frame_index_1].size());
std::vector<cvm::atom_pos> tmp_reference_frame_2(reference_frames[min_frame_index_2].size());
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_reference_frame_1[i_atom] = reference_frames[min_frame_index_1][i_atom] - reference_cog_1;
tmp_reference_frame_2[i_atom] = reference_frames[min_frame_index_2][i_atom] - reference_cog_2;
}
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_1;
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_2;
if (has_user_defined_fitting) {
cvm::atom_pos reference_fitting_cog_1, reference_fitting_cog_2;
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
reference_fitting_cog_1 += reference_fitting_frames[min_frame_index_1][i_atom];
reference_fitting_cog_2 += reference_fitting_frames[min_frame_index_2][i_atom];
}
reference_fitting_cog_1 /= reference_fitting_frames[min_frame_index_1].size();
reference_fitting_cog_2 /= reference_fitting_frames[min_frame_index_2].size();
tmp_reference_fitting_frame_1.resize(reference_fitting_frames[min_frame_index_1].size());
tmp_reference_fitting_frame_2.resize(reference_fitting_frames[min_frame_index_2].size());
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
tmp_reference_fitting_frame_1[i_atom] = reference_fitting_frames[min_frame_index_1][i_atom] - reference_fitting_cog_1;
tmp_reference_fitting_frame_2[i_atom] = reference_fitting_frames[min_frame_index_2][i_atom] - reference_fitting_cog_2;
}
rot_v4.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_2);
} else {
rot_v4.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_2);
}
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
v1[i_atom] = reference_frames[min_frame_index_1][i_atom] - (*(comp_atoms[min_frame_index_1]))[i_atom].pos;
v2[i_atom] = (*(comp_atoms[min_frame_index_2]))[i_atom].pos - reference_frames[min_frame_index_2][i_atom];
// v4 only computes in gzpath
// v4 = s_m - s_(m-1)
v4[i_atom] = rot_v4.q.rotate(tmp_reference_frame_1[i_atom]) - tmp_reference_frame_2[i_atom];
}
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
v3 = v4;
} else {
cvm::atom_pos reference_cog_3;
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
reference_cog_3 += reference_frames[min_frame_index_3][i_atom];
}
reference_cog_3 /= reference_frames[min_frame_index_3].size();
std::vector<cvm::atom_pos> tmp_reference_frame_3(reference_frames[min_frame_index_3].size());
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_reference_frame_3[i_atom] = reference_frames[min_frame_index_3][i_atom] - reference_cog_3;
}
if (has_user_defined_fitting) {
cvm::atom_pos reference_fitting_cog_3;
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_3].size(); ++i_atom) {
reference_fitting_cog_3 += reference_fitting_frames[min_frame_index_3][i_atom];
}
reference_fitting_cog_3 /= reference_fitting_frames[min_frame_index_3].size();
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_3(reference_fitting_frames[min_frame_index_3].size());
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_3].size(); ++i_atom) {
tmp_reference_fitting_frame_3[i_atom] = reference_fitting_frames[min_frame_index_3][i_atom] - reference_fitting_cog_3;
}
rot_v3.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_3);
} else {
rot_v3.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_3);
}
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
// v3 = s_(m+1) - s_m
v3[i_atom] = tmp_reference_frame_3[i_atom] - rot_v3.q.rotate(tmp_reference_frame_1[i_atom]);
}
}
}
void colvar::gzpath::calc_value() {
computeValue();
x = z;
}
void colvar::gzpath::calc_gradients() {
computeDerivatives();
cvm::rvector tmp_atom_grad_v1, tmp_atom_grad_v2;
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
tmp_atom_grad_v1 = -1.0 * dzdv1[i_atom];
tmp_atom_grad_v2 = dzdv2[i_atom];
(*(comp_atoms[min_frame_index_1]))[i_atom].grad += tmp_atom_grad_v1;
(*(comp_atoms[min_frame_index_2]))[i_atom].grad += tmp_atom_grad_v2;
}
}
void colvar::gzpath::apply_force(colvarvalue const &force) {
// The force applied to this CV is scalar type
cvm::real const &F = force.real_value;
(*(comp_atoms[min_frame_index_1])).apply_colvar_force(F);
(*(comp_atoms[min_frame_index_2])).apply_colvar_force(F);
}
colvar::linearCombination::linearCombination(std::string const &conf): cvc(conf) {
// Lookup all available sub-cvcs
for (auto it_cv_map = colvar::get_global_cvc_map().begin(); it_cv_map != colvar::get_global_cvc_map().end(); ++it_cv_map) {
if (key_lookup(conf, it_cv_map->first.c_str())) {
std::vector<std::string> sub_cvc_confs;
get_key_string_multi_value(conf, it_cv_map->first.c_str(), sub_cvc_confs);
for (auto it_sub_cvc_conf = sub_cvc_confs.begin(); it_sub_cvc_conf != sub_cvc_confs.end(); ++it_sub_cvc_conf) {
cv.push_back((it_cv_map->second)(*(it_sub_cvc_conf)));
}
}
}
// Sort all sub CVs by their names
std::sort(cv.begin(), cv.end(), compareColvarComponent);
for (auto it_sub_cv = cv.begin(); it_sub_cv != cv.end(); ++it_sub_cv) {
for (auto it_atom_group = (*it_sub_cv)->atom_groups.begin(); it_atom_group != (*it_sub_cv)->atom_groups.end(); ++it_atom_group) {
register_atom_group(*it_atom_group);
}
}
x.type(cv[0]->value());
x.reset();
use_explicit_gradients = true;
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
if (!cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
use_explicit_gradients = false;
}
}
if (!use_explicit_gradients) {
disable(f_cvc_explicit_gradient);
}
}
cvm::real colvar::linearCombination::getPolynomialFactorOfCVGradient(size_t i_cv) const {
cvm::real factor_polynomial = 1.0;
if (cv[i_cv]->value().type() == colvarvalue::type_scalar) {
factor_polynomial = cv[i_cv]->sup_coeff * cv[i_cv]->sup_np * cvm::pow(cv[i_cv]->value().real_value, cv[i_cv]->sup_np - 1);
} else {
factor_polynomial = cv[i_cv]->sup_coeff;
}
return factor_polynomial;
}
colvar::linearCombination::~linearCombination() {
for (auto it = cv.begin(); it != cv.end(); ++it) {
delete (*it);
}
}
void colvar::linearCombination::calc_value() {
x.reset();
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
cv[i_cv]->calc_value();
colvarvalue current_cv_value(cv[i_cv]->value());
// polynomial combination allowed
if (current_cv_value.type() == colvarvalue::type_scalar) {
x += cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np));
} else {
x += cv[i_cv]->sup_coeff * current_cv_value;
}
}
}
void colvar::linearCombination::calc_gradients() {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
cv[i_cv]->calc_gradients();
if ( cv[i_cv]->is_enabled(f_cvc_explicit_gradient) &&
!cv[i_cv]->is_enabled(f_cvc_scalable) &&
!cv[i_cv]->is_enabled(f_cvc_scalable_com)) {
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
for (size_t l_atom = 0; l_atom < (cv[i_cv]->atom_groups)[k_ag]->size(); ++l_atom) {
(*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad = factor_polynomial * (*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad;
}
}
}
}
}
}
void colvar::linearCombination::apply_force(colvarvalue const &force) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// If this CV us explicit gradients, then atomic gradients is already calculated
// We can apply the force to atom groups directly
if ( cv[i_cv]->is_enabled(f_cvc_explicit_gradient) &&
!cv[i_cv]->is_enabled(f_cvc_scalable) &&
!cv[i_cv]->is_enabled(f_cvc_scalable_com)
) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
(cv[i_cv]->atom_groups)[k_ag]->apply_colvar_force(force.real_value);
}
} else {
// Compute factors for polynomial combinations
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
colvarvalue cv_force = force.real_value * factor_polynomial;
cv[i_cv]->apply_force(cv_force);
}
}
}
colvar::CVBasedPath::CVBasedPath(std::string const &conf): cvc(conf) {
// Lookup all available sub-cvcs
for (auto it_cv_map = colvar::get_global_cvc_map().begin(); it_cv_map != colvar::get_global_cvc_map().end(); ++it_cv_map) {
if (key_lookup(conf, it_cv_map->first.c_str())) {
std::vector<std::string> sub_cvc_confs;
get_key_string_multi_value(conf, it_cv_map->first.c_str(), sub_cvc_confs);
for (auto it_sub_cvc_conf = sub_cvc_confs.begin(); it_sub_cvc_conf != sub_cvc_confs.end(); ++it_sub_cvc_conf) {
cv.push_back((it_cv_map->second)(*(it_sub_cvc_conf)));
}
}
}
// Sort all sub CVs by their names
std::sort(cv.begin(), cv.end(), compareColvarComponent);
// Register atom groups and determine the colvar type for reference
std::vector<colvarvalue> tmp_cv;
for (auto it_sub_cv = cv.begin(); it_sub_cv != cv.end(); ++it_sub_cv) {
for (auto it_atom_group = (*it_sub_cv)->atom_groups.begin(); it_atom_group != (*it_sub_cv)->atom_groups.end(); ++it_atom_group) {
register_atom_group(*it_atom_group);
}
colvarvalue tmp_i_cv((*it_sub_cv)->value());
tmp_i_cv.reset();
tmp_cv.push_back(tmp_i_cv);
}
// Read path file
// Lookup all reference CV values
std::string path_filename;
get_keyval(conf, "pathFile", path_filename);
cvm::log(std::string("Reading path file: ") + path_filename + std::string("\n"));
std::ifstream ifs_path(path_filename);
if (!ifs_path.is_open()) {
cvm::error("Error: failed to open path file.\n");
}
std::string line;
const std::string token(" ");
total_reference_frames = 0;
while (std::getline(ifs_path, line)) {
std::vector<std::string> fields;
split_string(line, token, fields);
size_t num_value_required = 0;
cvm::log(std::string("Reading reference frame ") + cvm::to_str(total_reference_frames + 1) + std::string("\n"));
for (size_t i_cv = 0; i_cv < tmp_cv.size(); ++i_cv) {
const size_t value_size = tmp_cv[i_cv].size();
num_value_required += value_size;
cvm::log(std::string("Reading CV ") + cv[i_cv]->name + std::string(" with ") + cvm::to_str(value_size) + std::string(" value(s)\n"));
if (num_value_required <= fields.size()) {
size_t start_index = num_value_required - value_size;
for (size_t i = start_index; i < num_value_required; ++i) {
tmp_cv[i_cv][i - start_index] = std::atof(fields[i].c_str());
cvm::log(cvm::to_str(tmp_cv[i_cv][i - start_index]));
}
} else {
cvm::error("Error: incorrect format of path file.\n");
}
}
if (!fields.empty()) {
ref_cv.push_back(tmp_cv);
++total_reference_frames;
}
}
if (total_reference_frames <= 1) {
cvm::error("Error: there is only 1 or 0 reference frame, which doesn't constitute a path.\n");
}
x.type(colvarvalue::type_scalar);
use_explicit_gradients = true;
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
if (!cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
use_explicit_gradients = false;
}
}
if (!use_explicit_gradients) {
disable(f_cvc_explicit_gradient);
}
}
void colvar::CVBasedPath::computeDistanceToReferenceFrames(std::vector<cvm::real>& result) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
cv[i_cv]->calc_value();
}
for (size_t i_frame = 0; i_frame < ref_cv.size(); ++i_frame) {
cvm::real rmsd_i = 0.0;
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
colvarvalue ref_cv_value(ref_cv[i_frame][i_cv]);
colvarvalue current_cv_value(cv[i_cv]->value());
// polynomial combination allowed
if (current_cv_value.type() == colvarvalue::type_scalar) {
// wrapping is already in dist2
rmsd_i += cv[i_cv]->dist2(cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np)), ref_cv_value.real_value);
} else {
rmsd_i += cv[i_cv]->dist2(cv[i_cv]->sup_coeff * current_cv_value, ref_cv_value);
}
}
rmsd_i /= cvm::real(cv.size());
rmsd_i = cvm::sqrt(rmsd_i);
result[i_frame] = rmsd_i;
}
}
void colvar::CVBasedPath::computeDistanceBetweenReferenceFrames(std::vector<cvm::real>& result) const {
if (ref_cv.size() < 2) return;
for (size_t i_frame = 1; i_frame < ref_cv.size(); ++i_frame) {
cvm::real dist_ij = 0.0;
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
colvarvalue ref_cv_value(ref_cv[i_frame][i_cv]);
colvarvalue prev_ref_cv_value(ref_cv[i_frame-1][i_cv]);
dist_ij += cv[i_cv]->dist2(ref_cv_value, prev_ref_cv_value);
}
dist_ij = cvm::sqrt(dist_ij);
result[i_frame-1] = dist_ij;
}
}
cvm::real colvar::CVBasedPath::getPolynomialFactorOfCVGradient(size_t i_cv) const {
cvm::real factor_polynomial = 1.0;
if (cv[i_cv]->value().type() == colvarvalue::type_scalar) {
factor_polynomial = cv[i_cv]->sup_coeff * cv[i_cv]->sup_np * cvm::pow(cv[i_cv]->value().real_value, cv[i_cv]->sup_np - 1);
} else {
factor_polynomial = cv[i_cv]->sup_coeff;
}
return factor_polynomial;
}
colvar::CVBasedPath::~CVBasedPath() {
for (auto it = cv.begin(); it != cv.end(); ++it) {
delete (*it);
}
atom_groups.clear();
}
colvar::gspathCV::gspathCV(std::string const &conf): CVBasedPath(conf) {
function_type = "gspathCV";
cvm::log(std::string("Total number of frames: ") + cvm::to_str(total_reference_frames) + std::string("\n"));
// Initialize variables for future calculation
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
if (use_second_closest_frame == true) {
cvm::log(std::string("Geometric path s(σ) will use the second closest frame to compute s_(m-1)\n"));
} else {
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m-1)\n"));
}
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
if (use_third_closest_frame == true) {
cvm::log(std::string("Geometric path s(σ) will use the third closest frame to compute s_(m+1)\n"));
} else {
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m+1)\n"));
}
if (total_reference_frames < 2) {
cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) + " reference frames, but gspathCV requires at least 2 frames.\n");
}
GeometricPathCV::GeometricPathBase<colvarvalue, cvm::real, GeometricPathCV::path_sz::S>::initialize(cv.size(), ref_cv[0], total_reference_frames, use_second_closest_frame, use_third_closest_frame);
x.type(colvarvalue::type_scalar);
use_explicit_gradients = true;
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
if (!cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
use_explicit_gradients = false;
}
}
if (!use_explicit_gradients) {
cvm::log("Geometric path s(σ) will use implicit gradients.\n");
disable(f_cvc_explicit_gradient);
}
}
colvar::gspathCV::~gspathCV() {}
void colvar::gspathCV::updateDistanceToReferenceFrames() {
computeDistanceToReferenceFrames(frame_distances);
}
void colvar::gspathCV::prepareVectors() {
// Compute v1, v2 and v3
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// values of sub-cvc are computed in update_distances
// cv[i_cv]->calc_value();
colvarvalue f1_ref_cv_i_value(ref_cv[min_frame_index_1][i_cv]);
colvarvalue f2_ref_cv_i_value(ref_cv[min_frame_index_2][i_cv]);
colvarvalue current_cv_value(cv[i_cv]->value());
// polynomial combination allowed
if (current_cv_value.type() == colvarvalue::type_scalar) {
v1[i_cv] = f1_ref_cv_i_value.real_value - cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np));
v2[i_cv] = cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np)) - f2_ref_cv_i_value.real_value;
} else {
v1[i_cv] = f1_ref_cv_i_value - cv[i_cv]->sup_coeff * current_cv_value;
v2[i_cv] = cv[i_cv]->sup_coeff * current_cv_value - f2_ref_cv_i_value;
}
cv[i_cv]->wrap(v1[i_cv]);
cv[i_cv]->wrap(v2[i_cv]);
}
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
v3[i_cv] = ref_cv[min_frame_index_1][i_cv] - ref_cv[min_frame_index_2][i_cv];
cv[i_cv]->wrap(v3[i_cv]);
}
} else {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
v3[i_cv] = ref_cv[min_frame_index_3][i_cv] - ref_cv[min_frame_index_1][i_cv];
cv[i_cv]->wrap(v3[i_cv]);
}
}
}
void colvar::gspathCV::calc_value() {
computeValue();
x = s;
}
void colvar::gspathCV::calc_gradients() {
computeDerivatives();
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// No matter whether the i-th cv uses implicit gradient, compute it first.
cv[i_cv]->calc_gradients();
// If the gradient is not implicit, then add the gradients to its atom groups
if ( cv[i_cv]->is_enabled(f_cvc_explicit_gradient) &&
!cv[i_cv]->is_enabled(f_cvc_scalable) &&
!cv[i_cv]->is_enabled(f_cvc_scalable_com)) {
// Temporary variables storing gradients
colvarvalue tmp_cv_grad_v1(cv[i_cv]->value());
colvarvalue tmp_cv_grad_v2(cv[i_cv]->value());
// Compute factors for polynomial combinations
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
// Loop over all elements of the corresponding colvar value
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
// ds/dz, z = vector of CVs
tmp_cv_grad_v1[j_elem] = -1.0 * sign * 0.5 * dfdv1[i_cv][j_elem] / M;
tmp_cv_grad_v2[j_elem] = sign * 0.5 * dfdv2[i_cv][j_elem] / M;
// Apply the gradients to the atom groups in i-th cv
// Loop over all atom groups
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
// Loop over all atoms in the k-th atom group
for (size_t l_atom = 0; l_atom < (cv[i_cv]->atom_groups)[k_ag]->size(); ++l_atom) {
// Chain rule
(*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad = factor_polynomial * ((*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v1[j_elem] + (*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v2[j_elem]);
}
}
}
}
}
}
void colvar::gspathCV::apply_force(colvarvalue const &force) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// If this CV us explicit gradients, then atomic gradients is already calculated
// We can apply the force to atom groups directly
if ( cv[i_cv]->is_enabled(f_cvc_explicit_gradient) &&
!cv[i_cv]->is_enabled(f_cvc_scalable) &&
!cv[i_cv]->is_enabled(f_cvc_scalable_com)
) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
(cv[i_cv]->atom_groups)[k_ag]->apply_colvar_force(force.real_value);
}
} else {
// Temporary variables storing gradients
colvarvalue tmp_cv_grad_v1(cv[i_cv]->value());
colvarvalue tmp_cv_grad_v2(cv[i_cv]->value());
// Compute factors for polynomial combinations
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
// ds/dz, z = vector of CVs
tmp_cv_grad_v1[j_elem] = -1.0 * sign * 0.5 * dfdv1[i_cv][j_elem] / M;
tmp_cv_grad_v2[j_elem] = sign * 0.5 * dfdv2[i_cv][j_elem] / M;
}
colvarvalue cv_force = force.real_value * factor_polynomial * (tmp_cv_grad_v1 + tmp_cv_grad_v2);
cv[i_cv]->apply_force(cv_force);
}
}
}
colvar::gzpathCV::gzpathCV(std::string const &conf): CVBasedPath(conf) {
function_type = "gzpathCV";
cvm::log(std::string("Total number of frames: ") + cvm::to_str(total_reference_frames) + std::string("\n"));
// Initialize variables for future calculation
M = cvm::real(total_reference_frames - 1);
m = 1.0;
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
if (use_second_closest_frame == true) {
cvm::log(std::string("Geometric path z(σ) will use the second closest frame to compute s_(m-1)\n"));
} else {
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m-1)\n"));
}
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
if (use_third_closest_frame == true) {
cvm::log(std::string("Geometric path z(σ) will use the third closest frame to compute s_(m+1)\n"));
} else {
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m+1)\n"));
}
bool b_use_z_square = false;
get_keyval(conf, "useZsquare", b_use_z_square, false);
if (b_use_z_square == true) {
cvm::log(std::string("Geometric path z(σ) will use the square of distance from current frame to path compute z\n"));
}
if (total_reference_frames < 2) {
cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) + " reference frames, but gzpathCV requires at least 2 frames.\n");
}
GeometricPathCV::GeometricPathBase<colvarvalue, cvm::real, GeometricPathCV::path_sz::Z>::initialize(cv.size(), ref_cv[0], total_reference_frames, use_second_closest_frame, use_third_closest_frame, b_use_z_square);
x.type(colvarvalue::type_scalar);
use_explicit_gradients = true;
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
if (!cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
use_explicit_gradients = false;
}
}
if (!use_explicit_gradients) {
cvm::log("Geometric path z(σ) will use implicit gradients.\n");
disable(f_cvc_explicit_gradient);
}
}
colvar::gzpathCV::~gzpathCV() {
}
void colvar::gzpathCV::updateDistanceToReferenceFrames() {
computeDistanceToReferenceFrames(frame_distances);
}
void colvar::gzpathCV::prepareVectors() {
// Compute v1, v2 and v3
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// values of sub-cvc are computed in update_distances
// cv[i_cv]->calc_value();
colvarvalue f1_ref_cv_i_value(ref_cv[min_frame_index_1][i_cv]);
colvarvalue f2_ref_cv_i_value(ref_cv[min_frame_index_2][i_cv]);
colvarvalue current_cv_value(cv[i_cv]->value());
// polynomial combination allowed
if (current_cv_value.type() == colvarvalue::type_scalar) {
v1[i_cv] = f1_ref_cv_i_value.real_value - cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np));
v2[i_cv] = cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np)) - f2_ref_cv_i_value.real_value;
} else {
v1[i_cv] = f1_ref_cv_i_value - cv[i_cv]->sup_coeff * current_cv_value;
v2[i_cv] = cv[i_cv]->sup_coeff * current_cv_value - f2_ref_cv_i_value;
}
v4[i_cv] = f1_ref_cv_i_value - f2_ref_cv_i_value;
cv[i_cv]->wrap(v1[i_cv]);
cv[i_cv]->wrap(v2[i_cv]);
cv[i_cv]->wrap(v4[i_cv]);
}
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
v3[i_cv] = ref_cv[min_frame_index_1][i_cv] - ref_cv[min_frame_index_2][i_cv];
cv[i_cv]->wrap(v3[i_cv]);
}
} else {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
v3[i_cv] = ref_cv[min_frame_index_3][i_cv] - ref_cv[min_frame_index_1][i_cv];
cv[i_cv]->wrap(v3[i_cv]);
}
}
}
void colvar::gzpathCV::calc_value() {
computeValue();
x = z;
}
void colvar::gzpathCV::calc_gradients() {
computeDerivatives();
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// No matter whether the i-th cv uses implicit gradient, compute it first.
cv[i_cv]->calc_gradients();
// If the gradient is not implicit, then add the gradients to its atom groups
if ( cv[i_cv]->is_enabled(f_cvc_explicit_gradient) &&
!cv[i_cv]->is_enabled(f_cvc_scalable) &&
!cv[i_cv]->is_enabled(f_cvc_scalable_com)) {
// Temporary variables storing gradients
colvarvalue tmp_cv_grad_v1 = -1.0 * dzdv1[i_cv];
colvarvalue tmp_cv_grad_v2 = 1.0 * dzdv2[i_cv];
// Compute factors for polynomial combinations
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
// Apply the gradients to the atom groups in i-th cv
// Loop over all atom groups
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
// Loop over all atoms in the k-th atom group
for (size_t l_atom = 0; l_atom < (cv[i_cv]->atom_groups)[k_ag]->size(); ++l_atom) {
// Chain rule
(*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad = factor_polynomial * ((*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v1[j_elem] + (*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v2[j_elem]);
}
}
}
}
}
}
void colvar::gzpathCV::apply_force(colvarvalue const &force) {
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
// If this CV us explicit gradients, then atomic gradients is already calculated
// We can apply the force to atom groups directly
if ( cv[i_cv]->is_enabled(f_cvc_explicit_gradient) &&
!cv[i_cv]->is_enabled(f_cvc_scalable) &&
!cv[i_cv]->is_enabled(f_cvc_scalable_com)) {
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
(cv[i_cv]->atom_groups)[k_ag]->apply_colvar_force(force.real_value);
}
}
else {
colvarvalue tmp_cv_grad_v1 = -1.0 * dzdv1[i_cv];
colvarvalue tmp_cv_grad_v2 = 1.0 * dzdv2[i_cv];
// Temporary variables storing gradients
// Compute factors for polynomial combinations
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
colvarvalue cv_force = force.real_value * factor_polynomial * (tmp_cv_grad_v1 + tmp_cv_grad_v2);
cv[i_cv]->apply_force(cv_force);
}
}
}
#endif