Files
lammps/lib/colvars/colvarcomp_rotations.cpp
2021-08-03 18:03:18 -04:00

777 lines
20 KiB
C++

// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/Colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#include "colvarmodule.h"
#include "colvarvalue.h"
#include "colvarparse.h"
#include "colvar.h"
#include "colvarcomp.h"
colvar::orientation::orientation(std::string const &conf)
: cvc()
{
function_type = "orientation";
disable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_quaternion);
init(conf);
}
int colvar::orientation::init(std::string const &conf)
{
int error_code = cvc::init(conf);
atoms = parse_group(conf, "atoms");
ref_pos.reserve(atoms->size());
if (get_keyval(conf, "refPositions", ref_pos, ref_pos)) {
cvm::log("Using reference positions from input file.\n");
if (ref_pos.size() != atoms->size()) {
return cvm::error("Error: reference positions do not "
"match the number of requested atoms.\n", INPUT_ERROR);
}
}
{
std::string file_name;
if (get_keyval(conf, "refPositionsFile", file_name)) {
std::string file_col;
double file_col_value=0.0;
if (get_keyval(conf, "refPositionsCol", file_col, std::string(""))) {
// use PDB flags if column is provided
bool found = get_keyval(conf, "refPositionsColValue", file_col_value, 0.0);
if (found && file_col_value==0.0) {
return cvm::error("Error: refPositionsColValue, "
"if provided, must be non-zero.\n", INPUT_ERROR);
}
}
ref_pos.resize(atoms->size());
cvm::load_coords(file_name.c_str(), &ref_pos, atoms,
file_col, file_col_value);
}
}
if (!ref_pos.size()) {
return cvm::error("Error: must define a set of "
"reference coordinates.\n", INPUT_ERROR);
}
cvm::log("Centering the reference coordinates: it is "
"assumed that each atom is the closest "
"periodic image to the center of geometry.\n");
cvm::rvector ref_cog(0.0, 0.0, 0.0);
size_t i;
for (i = 0; i < ref_pos.size(); i++) {
ref_cog += ref_pos[i];
}
ref_cog /= cvm::real(ref_pos.size());
for (i = 0; i < ref_pos.size(); i++) {
ref_pos[i] -= ref_cog;
}
get_keyval(conf, "closestToQuaternion", ref_quat, cvm::quaternion(1.0, 0.0, 0.0, 0.0));
// initialize rot member data
if (!atoms->noforce) {
rot.request_group2_gradients(atoms->size());
}
return error_code;
}
colvar::orientation::orientation()
: cvc()
{
function_type = "orientation";
disable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_quaternion);
}
void colvar::orientation::calc_value()
{
rot.b_debug_gradients = is_enabled(f_cvc_debug_gradient);
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
if ((rot.q).inner(ref_quat) >= 0.0) {
x.quaternion_value = rot.q;
} else {
x.quaternion_value = -1.0 * rot.q;
}
}
void colvar::orientation::calc_gradients()
{
// gradients have already been calculated and stored within the
// member object "rot"; we're not using the "grad" member of each
// atom object, because it only can represent the gradient of a
// scalar colvar
}
void colvar::orientation::apply_force(colvarvalue const &force)
{
cvm::quaternion const &FQ = force.quaternion_value;
if (!atoms->noforce) {
for (size_t ia = 0; ia < atoms->size(); ia++) {
for (size_t i = 0; i < 4; i++) {
(*atoms)[ia].apply_force(FQ[i] * rot.dQ0_2[ia][i]);
}
}
}
}
cvm::real colvar::orientation::dist2(colvarvalue const &x1,
colvarvalue const &x2) const
{
return x1.quaternion_value.dist2(x2);
}
colvarvalue colvar::orientation::dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
return x1.quaternion_value.dist2_grad(x2);
}
colvarvalue colvar::orientation::dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
return x2.quaternion_value.dist2_grad(x1);
}
colvar::orientation_angle::orientation_angle(std::string const &conf)
: orientation()
{
function_type = "orientation_angle";
init_as_angle();
enable(f_cvc_explicit_gradient);
init(conf);
}
int colvar::orientation_angle::init(std::string const &conf)
{
return orientation::init(conf);
}
void colvar::orientation_angle::calc_value()
{
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
if ((rot.q).q0 >= 0.0) {
x.real_value = (180.0/PI) * 2.0 * cvm::acos((rot.q).q0);
} else {
x.real_value = (180.0/PI) * 2.0 * cvm::acos(-1.0 * (rot.q).q0);
}
}
void colvar::orientation_angle::calc_gradients()
{
cvm::real const dxdq0 =
( ((rot.q).q0 * (rot.q).q0 < 1.0) ?
((180.0 / PI) * (-2.0) / cvm::sqrt(1.0 - ((rot.q).q0 * (rot.q).q0))) :
0.0 );
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms)[ia].grad = (dxdq0 * (rot.dQ0_2[ia])[0]);
}
}
void colvar::orientation_angle::apply_force(colvarvalue const &force)
{
cvm::real const &fw = force.real_value;
if (!atoms->noforce) {
atoms->apply_colvar_force(fw);
}
}
simple_scalar_dist_functions(orientation_angle)
colvar::orientation_proj::orientation_proj(std::string const &conf)
: orientation()
{
function_type = "orientation_proj";
enable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_scalar);
init_scalar_boundaries(0.0, 1.0);
init(conf);
}
int colvar::orientation_proj::init(std::string const &conf)
{
return orientation::init(conf);
}
void colvar::orientation_proj::calc_value()
{
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
x.real_value = 2.0 * (rot.q).q0 * (rot.q).q0 - 1.0;
}
void colvar::orientation_proj::calc_gradients()
{
cvm::real const dxdq0 = 2.0 * 2.0 * (rot.q).q0;
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms)[ia].grad = (dxdq0 * (rot.dQ0_2[ia])[0]);
}
}
void colvar::orientation_proj::apply_force(colvarvalue const &force)
{
cvm::real const &fw = force.real_value;
if (!atoms->noforce) {
atoms->apply_colvar_force(fw);
}
}
simple_scalar_dist_functions(orientation_proj)
colvar::tilt::tilt(std::string const &conf)
: orientation()
{
function_type = "tilt";
enable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_scalar);
init_scalar_boundaries(-1.0, 1.0);
init(conf);
}
int colvar::tilt::init(std::string const &conf)
{
int error_code = COLVARS_OK;
error_code |= orientation::init(conf);
get_keyval(conf, "axis", axis, cvm::rvector(0.0, 0.0, 1.0));
if (axis.norm2() != 1.0) {
axis /= axis.norm();
cvm::log("Normalizing rotation axis to "+cvm::to_str(axis)+".\n");
}
return error_code;
}
void colvar::tilt::calc_value()
{
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
x.real_value = rot.cos_theta(axis);
}
void colvar::tilt::calc_gradients()
{
cvm::quaternion const dxdq = rot.dcos_theta_dq(axis);
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms)[ia].grad = cvm::rvector(0.0, 0.0, 0.0);
for (size_t iq = 0; iq < 4; iq++) {
(*atoms)[ia].grad += (dxdq[iq] * (rot.dQ0_2[ia])[iq]);
}
}
}
void colvar::tilt::apply_force(colvarvalue const &force)
{
cvm::real const &fw = force.real_value;
if (!atoms->noforce) {
atoms->apply_colvar_force(fw);
}
}
simple_scalar_dist_functions(tilt)
colvar::spin_angle::spin_angle(std::string const &conf)
: orientation()
{
function_type = "spin_angle";
period = 360.0;
enable(f_cvc_periodic);
enable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_scalar);
init(conf);
}
int colvar::spin_angle::init(std::string const &conf)
{
int error_code = COLVARS_OK;
error_code |= orientation::init(conf);
get_keyval(conf, "axis", axis, cvm::rvector(0.0, 0.0, 1.0));
if (axis.norm2() != 1.0) {
axis /= axis.norm();
cvm::log("Normalizing rotation axis to "+cvm::to_str(axis)+".\n");
}
return error_code;
}
colvar::spin_angle::spin_angle()
: orientation()
{
function_type = "spin_angle";
period = 360.0;
enable(f_cvc_periodic);
enable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_scalar);
}
void colvar::spin_angle::calc_value()
{
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
x.real_value = rot.spin_angle(axis);
this->wrap(x);
}
void colvar::spin_angle::calc_gradients()
{
cvm::quaternion const dxdq = rot.dspin_angle_dq(axis);
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms)[ia].grad = cvm::rvector(0.0, 0.0, 0.0);
for (size_t iq = 0; iq < 4; iq++) {
(*atoms)[ia].grad += (dxdq[iq] * (rot.dQ0_2[ia])[iq]);
}
}
}
void colvar::spin_angle::apply_force(colvarvalue const &force)
{
cvm::real const &fw = force.real_value;
if (!atoms->noforce) {
atoms->apply_colvar_force(fw);
}
}
cvm::real colvar::spin_angle::dist2(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return diff * diff;
}
colvarvalue colvar::spin_angle::dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return 2.0 * diff;
}
colvarvalue colvar::spin_angle::dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return (-2.0) * diff;
}
void colvar::spin_angle::wrap(colvarvalue &x_unwrapped) const
{
if ((x_unwrapped.real_value - wrap_center) >= 180.0) {
x_unwrapped.real_value -= 360.0;
return;
}
if ((x_unwrapped.real_value - wrap_center) < -180.0) {
x_unwrapped.real_value += 360.0;
return;
}
return;
}
colvar::euler_phi::euler_phi(std::string const &conf)
: orientation()
{
function_type = "euler_phi";
period = 360.0;
enable(f_cvc_periodic);
enable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_scalar);
init(conf);
}
colvar::euler_phi::euler_phi()
: orientation()
{
function_type = "euler_phi";
period = 360.0;
enable(f_cvc_periodic);
enable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_scalar);
}
int colvar::euler_phi::init(std::string const &conf)
{
int error_code = COLVARS_OK;
error_code |= orientation::init(conf);
return error_code;
}
void colvar::euler_phi::calc_value()
{
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
const cvm::real& q0 = rot.q.q0;
const cvm::real& q1 = rot.q.q1;
const cvm::real& q2 = rot.q.q2;
const cvm::real& q3 = rot.q.q3;
const cvm::real tmp_y = 2 * (q0 * q1 + q2 * q3);
const cvm::real tmp_x = 1 - 2 * (q1 * q1 + q2 * q2);
x.real_value = cvm::atan2(tmp_y, tmp_x) * (180.0/PI);
}
void colvar::euler_phi::calc_gradients()
{
const cvm::real& q0 = rot.q.q0;
const cvm::real& q1 = rot.q.q1;
const cvm::real& q2 = rot.q.q2;
const cvm::real& q3 = rot.q.q3;
const cvm::real denominator = (2 * q0 * q1 + 2 * q2 * q3) * (2 * q0 * q1 + 2 * q2 * q3) + (-2 * q1 * q1 - 2 * q2 * q2 + 1) * (-2 * q1 * q1 - 2 * q2 * q2 + 1);
const cvm::real dxdq0 = (180.0/PI) * 2 * q1 * (-2 * q1 * q1 - 2 * q2 * q2 + 1) / denominator;
const cvm::real dxdq1 = (180.0/PI) * (2 * q0 * (-2 * q1 * q1 - 2 * q2 * q2 + 1) - 4 * q1 * (-2 * q0 * q1 - 2 * q2 * q3)) / denominator;
const cvm::real dxdq2 = (180.0/PI) * (-4 * q2 * (-2 * q0 * q1 - 2 * q2 * q3) + 2 * q3 * (-2 * q1 * q1 - 2 * q2 * q2 + 1)) / denominator;
const cvm::real dxdq3 = (180.0/PI) * 2 * q2 * (-2 * q1 * q1 - 2 * q2 * q2 + 1) / denominator;
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms)[ia].grad = (dxdq0 * (rot.dQ0_2[ia])[0]) +
(dxdq1 * (rot.dQ0_2[ia])[1]) +
(dxdq2 * (rot.dQ0_2[ia])[2]) +
(dxdq3 * (rot.dQ0_2[ia])[3]);
}
}
void colvar::euler_phi::apply_force(colvarvalue const &force)
{
cvm::real const &fw = force.real_value;
if (!atoms->noforce) {
atoms->apply_colvar_force(fw);
}
}
cvm::real colvar::euler_phi::dist2(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return diff * diff;
}
colvarvalue colvar::euler_phi::dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return 2.0 * diff;
}
colvarvalue colvar::euler_phi::dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return (-2.0) * diff;
}
void colvar::euler_phi::wrap(colvarvalue &x_unwrapped) const
{
if ((x_unwrapped.real_value - wrap_center) >= 180.0) {
x_unwrapped.real_value -= 360.0;
return;
}
if ((x_unwrapped.real_value - wrap_center) < -180.0) {
x_unwrapped.real_value += 360.0;
return;
}
return;
}
colvar::euler_psi::euler_psi(std::string const &conf)
: orientation()
{
function_type = "euler_psi";
period = 360.0;
enable(f_cvc_periodic);
enable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_scalar);
init(conf);
}
colvar::euler_psi::euler_psi()
: orientation()
{
function_type = "euler_psi";
period = 360.0;
enable(f_cvc_periodic);
enable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_scalar);
}
int colvar::euler_psi::init(std::string const &conf)
{
int error_code = COLVARS_OK;
error_code |= orientation::init(conf);
return error_code;
}
void colvar::euler_psi::calc_value()
{
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
const cvm::real& q0 = rot.q.q0;
const cvm::real& q1 = rot.q.q1;
const cvm::real& q2 = rot.q.q2;
const cvm::real& q3 = rot.q.q3;
const cvm::real tmp_y = 2 * (q0 * q3 + q1 * q2);
const cvm::real tmp_x = 1 - 2 * (q2 * q2 + q3 * q3);
x.real_value = cvm::atan2(tmp_y, tmp_x) * (180.0/PI);
}
void colvar::euler_psi::calc_gradients()
{
const cvm::real& q0 = rot.q.q0;
const cvm::real& q1 = rot.q.q1;
const cvm::real& q2 = rot.q.q2;
const cvm::real& q3 = rot.q.q3;
const cvm::real denominator = (2 * q0 * q3 + 2 * q1 * q2) * (2 * q0 * q3 + 2 * q1 * q2) + (-2 * q2 * q2 - 2 * q3 * q3 + 1) * (-2 * q2 * q2 - 2 * q3 * q3 + 1);
const cvm::real dxdq0 = (180.0/PI) * 2 * q3 * (-2 * q2 * q2 - 2 * q3 * q3 + 1) / denominator;
const cvm::real dxdq1 = (180.0/PI) * 2 * q2 * (-2 * q2 * q2 - 2 * q3 * q3 + 1) / denominator;
const cvm::real dxdq2 = (180.0/PI) * (2 * q1 * (-2 * q2 * q2 - 2 * q3 * q3 + 1) - 4 * q2 * (-2 * q0 * q3 - 2 * q1 * q2)) / denominator;
const cvm::real dxdq3 = (180.0/PI) * (2 * q0 * (-2 * q2 * q2 - 2 * q3 * q3 + 1) - 4 * q3 * (-2 * q0 * q3 - 2 * q1 * q2)) / denominator;
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms)[ia].grad = (dxdq0 * (rot.dQ0_2[ia])[0]) +
(dxdq1 * (rot.dQ0_2[ia])[1]) +
(dxdq2 * (rot.dQ0_2[ia])[2]) +
(dxdq3 * (rot.dQ0_2[ia])[3]);
}
}
void colvar::euler_psi::apply_force(colvarvalue const &force)
{
cvm::real const &fw = force.real_value;
if (!atoms->noforce) {
atoms->apply_colvar_force(fw);
}
}
cvm::real colvar::euler_psi::dist2(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return diff * diff;
}
colvarvalue colvar::euler_psi::dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return 2.0 * diff;
}
colvarvalue colvar::euler_psi::dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return (-2.0) * diff;
}
void colvar::euler_psi::wrap(colvarvalue &x_unwrapped) const
{
if ((x_unwrapped.real_value - wrap_center) >= 180.0) {
x_unwrapped.real_value -= 360.0;
return;
}
if ((x_unwrapped.real_value - wrap_center) < -180.0) {
x_unwrapped.real_value += 360.0;
return;
}
return;
}
colvar::euler_theta::euler_theta(std::string const &conf)
: orientation()
{
function_type = "euler_theta";
enable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_scalar);
init(conf);
}
colvar::euler_theta::euler_theta()
: orientation()
{
function_type = "euler_theta";
enable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_scalar);
}
int colvar::euler_theta::init(std::string const &conf)
{
int error_code = COLVARS_OK;
error_code |= orientation::init(conf);
return error_code;
}
void colvar::euler_theta::calc_value()
{
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
const cvm::real& q0 = rot.q.q0;
const cvm::real& q1 = rot.q.q1;
const cvm::real& q2 = rot.q.q2;
const cvm::real& q3 = rot.q.q3;
x.real_value = cvm::asin(2 * (q0 * q2 - q3 * q1)) * (180.0/PI);
}
void colvar::euler_theta::calc_gradients()
{
const cvm::real& q0 = rot.q.q0;
const cvm::real& q1 = rot.q.q1;
const cvm::real& q2 = rot.q.q2;
const cvm::real& q3 = rot.q.q3;
const cvm::real denominator = cvm::sqrt(1 - (2 * q0 * q2 - 2 * q1 * q3) * (2 * q0 * q2 - 2 * q1 * q3));
const cvm::real dxdq0 = (180.0/PI) * 2 * q2 / denominator;
const cvm::real dxdq1 = (180.0/PI) * -2 * q3 / denominator;
const cvm::real dxdq2 = (180.0/PI) * 2 * q0 / denominator;
const cvm::real dxdq3 = (180.0/PI) * -2 * q1 / denominator;
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms)[ia].grad = (dxdq0 * (rot.dQ0_2[ia])[0]) +
(dxdq1 * (rot.dQ0_2[ia])[1]) +
(dxdq2 * (rot.dQ0_2[ia])[2]) +
(dxdq3 * (rot.dQ0_2[ia])[3]);
}
}
void colvar::euler_theta::apply_force(colvarvalue const &force)
{
cvm::real const &fw = force.real_value;
if (!atoms->noforce) {
atoms->apply_colvar_force(fw);
}
}
cvm::real colvar::euler_theta::dist2(colvarvalue const &x1,
colvarvalue const &x2) const
{
// theta angle is not periodic
return cvc::dist2(x1, x2);
}
colvarvalue colvar::euler_theta::dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
// theta angle is not periodic
return cvc::dist2_lgrad(x1, x2);
}
colvarvalue colvar::euler_theta::dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
// theta angle is not periodic
return cvc::dist2_rgrad(x1, x2);
}