514 lines
15 KiB
C++
514 lines
15 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Daniele Rapetti (iximiel@gmail.com)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "pair_smatb_single.h"
|
|
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "error.h"
|
|
#include "force.h"
|
|
#include "memory.h"
|
|
#include "neigh_list.h"
|
|
#include "neighbor.h"
|
|
|
|
#include <cmath>
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairSMATBSingle::PairSMATBSingle(LAMMPS *_lmp) :
|
|
Pair(_lmp), nmax(0), on_eb(nullptr), r0(0), p(0), A(0), q(0), QSI(0), cutOffStart(0),
|
|
cutOffEnd(0), cutOffEnd2(0), a3(0), a4(0), a5(0), x3(0), x4(0), x5(0)
|
|
{
|
|
single_enable = 0; // 1 if single() routine exists
|
|
restartinfo = 1; // 1 if pair style writes restart info
|
|
respa_enable = 0; // 1 if inner/middle/outer rRESPA routines
|
|
one_coeff = 0; // 1 if allows only one coeff * * call
|
|
manybody_flag = 1; // 1 if a manybody potential
|
|
no_virial_fdotr_compute = 0; // 1 if does not invoke virial_fdotr_compute()
|
|
writedata = 1; // 1 if writes coeffs to data file
|
|
ghostneigh = 0; // 1 if pair style needs neighbors of ghosts
|
|
|
|
// set comm size needed by this Pair
|
|
comm_forward = 1;
|
|
comm_reverse = 1;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairSMATBSingle::~PairSMATBSingle()
|
|
{
|
|
if (copymode) { return; }
|
|
memory->destroy(on_eb);
|
|
if (allocated) {
|
|
memory->destroy(setflag);
|
|
memory->destroy(cutsq);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairSMATBSingle::compute(int eflag, int vflag)
|
|
{
|
|
int i, j, ii, jj, jnum;
|
|
double xtmp, ytmp, ztmp, del[3], fpair;
|
|
double dijsq, dij;
|
|
double espo, aexpp, qsiexpq, eb_i, Fb, Fr;
|
|
double polyval, polyval2, polyval3, polyval4, polyval5;
|
|
|
|
if (eflag || vflag) {
|
|
ev_setup(eflag, vflag);
|
|
eng_vdwl = 0;
|
|
} else {
|
|
evflag = vflag_fdotr = eflag_global = eflag_atom = 0;
|
|
}
|
|
|
|
// grow on_eb array if necessary
|
|
|
|
if (atom->nmax > nmax) {
|
|
nmax = atom->nmax;
|
|
memory->grow(on_eb, nmax, "pair_smatb:on_eb");
|
|
}
|
|
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
int nall = nlocal + atom->nghost;
|
|
|
|
int newton_pair = force->newton_pair;
|
|
|
|
// zero out on_eb
|
|
if (newton_pair) {
|
|
memset(on_eb, 0, nall * sizeof(on_eb[0]));
|
|
} else {
|
|
memset(on_eb, 0, nlocal * sizeof(on_eb[0]));
|
|
}
|
|
|
|
int inum = list->inum;
|
|
int *ilist = list->ilist;
|
|
int *jlist;
|
|
int *numneigh = list->numneigh;
|
|
int **firstneigh = list->firstneigh;
|
|
|
|
// FIRST LOOP: CALCULATES the squared bonding energy and accumulate it in on_eb for each atom
|
|
for (ii = 0; ii < inum; ++ii) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
for (jj = 0; jj < jnum; ++jj) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
del[0] = xtmp - x[j][0];
|
|
del[1] = ytmp - x[j][1];
|
|
del[2] = ztmp - x[j][2];
|
|
dijsq = del[0] * del[0] + del[1] * del[1] + del[2] * del[2];
|
|
|
|
if (dijsq < cutOffEnd2) {
|
|
dij = sqrt(dijsq);
|
|
if (dij < cutOffStart) {
|
|
qsiexpq = (QSI * QSI) * exp(2.0 * q * (1.0 - dij / r0));
|
|
} else {
|
|
polyval = dij - cutOffEnd;
|
|
polyval3 = polyval * polyval * polyval;
|
|
polyval4 = polyval3 * polyval;
|
|
polyval5 = polyval4 * polyval;
|
|
qsiexpq = x5 * polyval5 + x4 * polyval4 + x3 * polyval3;
|
|
qsiexpq = qsiexpq * qsiexpq;
|
|
}
|
|
on_eb[i] += qsiexpq;
|
|
on_eb[j] += qsiexpq;
|
|
}
|
|
}
|
|
}
|
|
|
|
// communicate the squared bonding energy between the various bins
|
|
|
|
comm->reverse_comm(this);
|
|
|
|
// Support Loop: take the square root of the bonding energy and
|
|
// accumulate it in the energy accumulator if needed the store the
|
|
// reciprocal in on_eb in order to not do it in the SECOND LOOP
|
|
|
|
for (ii = 0; ii < inum; ++ii) {
|
|
i = ilist[ii];
|
|
if (i < nlocal) {
|
|
eb_i = sqrt(on_eb[i]);
|
|
if (eb_i != 0.0) {
|
|
on_eb[i] = 1.0 / eb_i;
|
|
} else {
|
|
on_eb[i] = 0.0;
|
|
}
|
|
//if needed the bonding energy is accumulated:
|
|
if (eflag_either) {
|
|
if (eflag_atom) { eatom[i] -= eb_i; }
|
|
if (eflag_global) { eng_vdwl -= eb_i; }
|
|
}
|
|
}
|
|
}
|
|
// this communication stores the denominators in the ghosts atoms,
|
|
// this is needed because of how forces are calculated
|
|
comm->forward_comm(this);
|
|
|
|
// SECOND LOOP: given on_eb[i] calculates forces and energies
|
|
for (ii = 0; ii < inum; ++ii) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
del[0] = xtmp - x[j][0];
|
|
del[1] = ytmp - x[j][1];
|
|
del[2] = ztmp - x[j][2];
|
|
|
|
dijsq = del[0] * del[0] + del[1] * del[1] + del[2] * del[2];
|
|
if (dijsq < cutOffEnd2) {
|
|
dij = sqrt(dijsq);
|
|
if (dij < cutOffStart) {
|
|
espo = 1.0 - dij / r0;
|
|
aexpp = exp(p * espo) * A;
|
|
Fr = (2.0 * aexpp) * (p / r0);
|
|
qsiexpq = (QSI * QSI) * exp(2.0 * q * espo);
|
|
Fb = -qsiexpq * q / r0;
|
|
} else {
|
|
polyval = dij - cutOffEnd;
|
|
polyval2 = polyval * polyval;
|
|
polyval3 = polyval2 * polyval;
|
|
polyval4 = polyval3 * polyval;
|
|
polyval5 = polyval4 * polyval;
|
|
aexpp = a5 * polyval5 + a4 * polyval4 + a3 * polyval3;
|
|
Fr = -2.0 * (5.0 * a5 * polyval4 + 4.0 * a4 * polyval3 + 3.0 * a3 * polyval2);
|
|
qsiexpq = x5 * polyval5 + x4 * polyval4 + x3 * polyval3;
|
|
Fb = ((5.0 * x5 * polyval4 + 4.0 * x4 * polyval3 + 3.0 * x3 * polyval2)) * qsiexpq;
|
|
}
|
|
// if needed the repulsive energy is accumulated:
|
|
if (eflag_either) {
|
|
if (eflag_atom) {
|
|
eatom[i] += aexpp;
|
|
if (newton_pair || j < nlocal) { eatom[j] += aexpp; }
|
|
}
|
|
if (eflag_global) {
|
|
if (newton_pair || j < nlocal) {
|
|
eng_vdwl += 2.0 * (aexpp);
|
|
} else {
|
|
eng_vdwl += aexpp;
|
|
}
|
|
}
|
|
}
|
|
// calculates the module of the pair energy between i and j
|
|
fpair = (Fb * (on_eb[i] + on_eb[j]) + Fr) / dij;
|
|
|
|
f[i][0] += del[0] * fpair;
|
|
f[i][1] += del[1] * fpair;
|
|
f[i][2] += del[2] * fpair;
|
|
if (newton_pair || j < nlocal) {
|
|
f[j][0] -= del[0] * fpair;
|
|
f[j][1] -= del[1] * fpair;
|
|
f[j][2] -= del[2] * fpair;
|
|
}
|
|
if (vflag_atom) {
|
|
ev_tally(i, j, nlocal, newton_pair, 0.0,
|
|
0.0, //Energy is tally'd in the other parts of the potential
|
|
fpair, del[0], del[1], del[2]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (vflag_fdotr) virial_fdotr_compute();
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
global settings
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairSMATBSingle::settings(int narg, char **)
|
|
{
|
|
if (narg > 0) error->all(FLERR, "Illegal pair_style command: smatb accepts no options");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
allocate all arrays
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairSMATBSingle::allocate()
|
|
{
|
|
int n = atom->ntypes;
|
|
int natoms = atom->natoms;
|
|
|
|
memory->create(setflag, n + 1, n + 1, "pair_smatb:setflag");
|
|
for (int i = 1; i <= n; i++) {
|
|
for (int j = i; j <= n; j++) { setflag[i][j] = 0; }
|
|
}
|
|
|
|
memory->create(cutsq, n + 1, n + 1, "pair_smatb:cutsq");
|
|
|
|
allocated = 1;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set coeffs for one or more type pairs
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairSMATBSingle::coeff(int narg, char **arg)
|
|
{
|
|
if (!allocated) { allocate(); }
|
|
if (narg != 9) utils::missing_cmd_args(FLERR, "pair_style smatb/single", error);
|
|
|
|
int ilo, ihi, jlo, jhi;
|
|
utils::bounds(FLERR, arg[0], 1, atom->ntypes, ilo, ihi, error);
|
|
utils::bounds(FLERR, arg[1], 1, atom->ntypes, jlo, jhi, error);
|
|
|
|
r0 = utils::numeric(FLERR, arg[2], false, lmp);
|
|
p = utils::numeric(FLERR, arg[3], false, lmp);
|
|
q = utils::numeric(FLERR, arg[4], false, lmp);
|
|
A = utils::numeric(FLERR, arg[5], false, lmp);
|
|
QSI = utils::numeric(FLERR, arg[6], false, lmp);
|
|
cutOffStart = utils::numeric(FLERR, arg[7], false, lmp);
|
|
cutOffEnd = utils::numeric(FLERR, arg[8], false, lmp);
|
|
|
|
int count = 0;
|
|
for (int i = ilo; i <= ihi; i++) {
|
|
for (int j = MAX(jlo, i); j <= jhi; j++) {
|
|
setflag[i][j] = 1;
|
|
|
|
count++;
|
|
}
|
|
}
|
|
|
|
if (count == 0) error->all(FLERR, "Incorrect args for pair coefficients");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
init for one type pair i,j and corresponding j,i
|
|
------------------------------------------------------------------------- */
|
|
|
|
double PairSMATBSingle::init_one(int i, int j)
|
|
{
|
|
if (setflag[i][j] == 0) error->all(FLERR, "All pair coeffs are not set");
|
|
//calculating the polynomial linking to zero
|
|
double es = cutOffEnd - cutOffStart;
|
|
double es2 = es * es;
|
|
double es3 = es2 * es;
|
|
|
|
//variables for poly for p and A
|
|
double expp = A * exp(p * (1. - cutOffStart / r0));
|
|
double ap = -1. / es3;
|
|
double bp = p / (r0 * es2);
|
|
double cp = -(p * p) / (es * r0 * r0);
|
|
|
|
a5 = expp * (12. * ap + 6. * bp + cp) / (2. * es2);
|
|
a4 = expp * (15. * ap + 7. * bp + cp) / es;
|
|
a3 = expp * (20. * ap + 8. * bp + cp) / 2.;
|
|
|
|
//variables for poly for q and qsi
|
|
double expq = QSI * exp(q * (1. - cutOffStart / r0));
|
|
double aq = -1 / es3;
|
|
double bq = q / (es2 * r0);
|
|
double cq = -(q * q) / (es * r0 * r0);
|
|
|
|
x5 = expq * (12. * aq + 6. * bq + cq) / (2. * es2);
|
|
x4 = expq * (15. * aq + 7. * bq + cq) / es;
|
|
x3 = expq * (20. * aq + 8. * bq + cq) / 2.;
|
|
|
|
cutOffEnd2 = cutOffEnd * cutOffEnd;
|
|
if (i != j) {
|
|
setflag[j][i] = 1;
|
|
cutOffEnd2 = cutOffEnd2;
|
|
|
|
r0 = r0;
|
|
p = p;
|
|
q = q;
|
|
A = A;
|
|
QSI = QSI;
|
|
cutOffStart = cutOffStart;
|
|
cutOffEnd = cutOffEnd;
|
|
|
|
a3 = a3;
|
|
a4 = a4;
|
|
a5 = a5;
|
|
x3 = x3;
|
|
x4 = x4;
|
|
x5 = x5;
|
|
}
|
|
|
|
return cutOffEnd;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
int PairSMATBSingle::pack_forward_comm(int n, int *list, double *buf, int pbc_flag, int *pbc)
|
|
{
|
|
int i, j, m;
|
|
|
|
m = 0;
|
|
for (i = 0; i < n; ++i) {
|
|
j = list[i];
|
|
buf[m++] = on_eb[j];
|
|
}
|
|
return m;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairSMATBSingle::unpack_forward_comm(int n, int first, double *buf)
|
|
{
|
|
int i, m, last;
|
|
|
|
m = 0;
|
|
last = first + n;
|
|
for (i = first; i < last; ++i) { on_eb[i] = buf[m++]; }
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
int PairSMATBSingle::pack_reverse_comm(int n, int first, double *buf)
|
|
{
|
|
int i, m, last;
|
|
|
|
m = 0;
|
|
last = first + n;
|
|
for (i = first; i < last; ++i) { buf[m++] = on_eb[i]; }
|
|
return m;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairSMATBSingle::unpack_reverse_comm(int n, int *list, double *buf)
|
|
{
|
|
int i, j, m;
|
|
m = 0;
|
|
for (i = 0; i < n; i++) {
|
|
j = list[i];
|
|
on_eb[j] += buf[m++];
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
//write binary data of this simulation:
|
|
void PairSMATBSingle::write_restart_settings(FILE *fp)
|
|
{
|
|
fwrite(&offset_flag, sizeof(int), 1, fp);
|
|
fwrite(&mix_flag, sizeof(int), 1, fp);
|
|
fwrite(&tail_flag, sizeof(int), 1, fp);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairSMATBSingle::read_restart_settings(FILE *fp)
|
|
{
|
|
int me = comm->me;
|
|
size_t result;
|
|
if (me == 0) {
|
|
result = fread(&offset_flag, sizeof(int), 1, fp);
|
|
result = fread(&mix_flag, sizeof(int), 1, fp);
|
|
result = fread(&tail_flag, sizeof(int), 1, fp);
|
|
}
|
|
MPI_Bcast(&offset_flag, 1, MPI_INT, 0, world);
|
|
MPI_Bcast(&mix_flag, 1, MPI_INT, 0, world);
|
|
MPI_Bcast(&tail_flag, 1, MPI_INT, 0, world);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairSMATBSingle::write_restart(FILE *fp)
|
|
{
|
|
write_restart_settings(fp);
|
|
|
|
int i, j;
|
|
for (i = 1; i <= atom->ntypes; i++) {
|
|
for (j = i; j <= atom->ntypes; j++) {
|
|
fwrite(&setflag[i][j], sizeof(int), 1, fp);
|
|
if (setflag[i][j]) {
|
|
fwrite(&r0, sizeof(double), 1, fp);
|
|
fwrite(&p, sizeof(double), 1, fp);
|
|
fwrite(&q, sizeof(double), 1, fp);
|
|
fwrite(&A, sizeof(double), 1, fp);
|
|
fwrite(&QSI, sizeof(double), 1, fp);
|
|
fwrite(&cutOffStart, sizeof(double), 1, fp);
|
|
fwrite(&cutOffEnd, sizeof(double), 1, fp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairSMATBSingle::read_restart(FILE *fp)
|
|
{
|
|
read_restart_settings(fp);
|
|
|
|
allocate();
|
|
size_t result;
|
|
|
|
int i, j;
|
|
int me = comm->me;
|
|
for (i = 1; i <= atom->ntypes; i++)
|
|
for (j = i; j <= atom->ntypes; j++) {
|
|
if (me == 0) { result = fread(&setflag[i][j], sizeof(int), 1, fp); }
|
|
MPI_Bcast(&setflag[i][j], 1, MPI_INT, 0, world);
|
|
if (setflag[i][j]) {
|
|
if (me == 0) {
|
|
utils::sfread(FLERR, &r0, sizeof(double), 1, fp, nullptr, error);
|
|
utils::sfread(FLERR, &p, sizeof(double), 1, fp, nullptr, error);
|
|
utils::sfread(FLERR, &q, sizeof(double), 1, fp, nullptr, error);
|
|
utils::sfread(FLERR, &A, sizeof(double), 1, fp, nullptr, error);
|
|
utils::sfread(FLERR, &QSI, sizeof(double), 1, fp, nullptr, error);
|
|
utils::sfread(FLERR, &cutOffStart, sizeof(double), 1, fp, nullptr, error);
|
|
utils::sfread(FLERR, &cutOffEnd, sizeof(double), 1, fp, nullptr, error);
|
|
}
|
|
MPI_Bcast(&r0, 1, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&p, 1, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&q, 1, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&A, 1, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&QSI, 1, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&cutOffStart, 1, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&cutOffEnd, 1, MPI_DOUBLE, 0, world);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairSMATBSingle::write_data(FILE *fp)
|
|
{
|
|
for (int i = 1; i <= atom->ntypes; i++) {
|
|
fprintf(fp, "%d %g %g %g %g %g %g %g\n", i, r0, p, q, A, QSI, cutOffStart, cutOffEnd);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairSMATBSingle::write_data_all(FILE *fp)
|
|
{
|
|
for (int i = 1; i <= atom->ntypes; i++) {
|
|
for (int j = i; j <= atom->ntypes; j++) {
|
|
fprintf(fp, "%d %d %g %g %g %g %g %g %g\n", i, j, r0, p, q, A, QSI, cutOffStart, cutOffEnd);
|
|
}
|
|
}
|
|
}
|