435 lines
12 KiB
C++
435 lines
12 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Special Angle Potential for the CMM coarse grained MD potentials.
|
|
Contributing author: Axel Kohlmeyer <akohlmey@gmail.com>
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "math.h"
|
|
#include "stdlib.h"
|
|
#include "angle_cg_cmm.h"
|
|
#include "atom.h"
|
|
#include "neighbor.h"
|
|
#include "domain.h"
|
|
#include "comm.h"
|
|
#include "force.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
#define SMALL 0.001
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
AngleCGCMM::AngleCGCMM(LAMMPS *lmp) : Angle(lmp) {}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
AngleCGCMM::~AngleCGCMM()
|
|
{
|
|
if (allocated) {
|
|
memory->destroy(setflag);
|
|
memory->destroy(k);
|
|
memory->destroy(theta0);
|
|
memory->destroy(cg_type);
|
|
memory->destroy(epsilon);
|
|
memory->destroy(sigma);
|
|
memory->destroy(rcut);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void AngleCGCMM::ev_tally_lj13(int i, int j, int nlocal, int newton_bond,
|
|
double evdwl, double fpair,
|
|
double delx, double dely, double delz)
|
|
{
|
|
double v[6];
|
|
|
|
if (eflag_either) {
|
|
if (eflag_global) {
|
|
if (newton_bond) {
|
|
energy += evdwl;
|
|
} else {
|
|
if (i < nlocal)
|
|
energy += 0.5*evdwl;
|
|
if (j < nlocal)
|
|
energy += 0.5*evdwl;
|
|
}
|
|
}
|
|
if (eflag_atom) {
|
|
if (newton_bond || i < nlocal) eatom[i] += 0.5*evdwl;
|
|
if (newton_bond || j < nlocal) eatom[i] += 0.5*evdwl;
|
|
}
|
|
}
|
|
|
|
if (vflag_either) {
|
|
v[0] = delx*delx*fpair;
|
|
v[1] = dely*dely*fpair;
|
|
v[2] = delz*delz*fpair;
|
|
v[3] = delx*dely*fpair;
|
|
v[4] = delx*delz*fpair;
|
|
v[5] = dely*delz*fpair;
|
|
|
|
if (vflag_global) {
|
|
if (newton_bond) {
|
|
virial[0] += v[0];
|
|
virial[1] += v[1];
|
|
virial[2] += v[2];
|
|
virial[3] += v[3];
|
|
virial[4] += v[4];
|
|
virial[5] += v[5];
|
|
} else {
|
|
if (i < nlocal) {
|
|
virial[0] += 0.5*v[0];
|
|
virial[1] += 0.5*v[1];
|
|
virial[2] += 0.5*v[2];
|
|
virial[3] += 0.5*v[3];
|
|
virial[4] += 0.5*v[4];
|
|
virial[5] += 0.5*v[5];
|
|
}
|
|
if (j < nlocal) {
|
|
virial[0] += 0.5*v[0];
|
|
virial[1] += 0.5*v[1];
|
|
virial[2] += 0.5*v[2];
|
|
virial[3] += 0.5*v[3];
|
|
virial[4] += 0.5*v[4];
|
|
virial[5] += 0.5*v[5];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (vflag_atom) {
|
|
if (newton_bond || i < nlocal) {
|
|
vatom[i][0] += 0.5*v[0];
|
|
vatom[i][1] += 0.5*v[1];
|
|
vatom[i][2] += 0.5*v[2];
|
|
vatom[i][3] += 0.5*v[3];
|
|
vatom[i][4] += 0.5*v[4];
|
|
vatom[i][5] += 0.5*v[5];
|
|
}
|
|
if (newton_bond || j < nlocal) {
|
|
vatom[j][0] += 0.5*v[0];
|
|
vatom[j][1] += 0.5*v[1];
|
|
vatom[j][2] += 0.5*v[2];
|
|
vatom[j][3] += 0.5*v[3];
|
|
vatom[j][4] += 0.5*v[4];
|
|
vatom[j][5] += 0.5*v[5];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void AngleCGCMM::compute(int eflag, int vflag)
|
|
{
|
|
int i1,i2,i3,n,type;
|
|
double delx1,dely1,delz1,delx2,dely2,delz2,delx3,dely3,delz3;
|
|
double eangle,f1[3],f3[3],e13,f13;
|
|
double dtheta,tk;
|
|
double rsq1,rsq2,rsq3,r1,r2,r3,c,s,a,a11,a12,a22;
|
|
|
|
eangle = 0.0;
|
|
if (eflag || vflag) ev_setup(eflag,vflag);
|
|
else evflag = 0;
|
|
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
int **anglelist = neighbor->anglelist;
|
|
int nanglelist = neighbor->nanglelist;
|
|
int nlocal = atom->nlocal;
|
|
int newton_bond = force->newton_bond;
|
|
|
|
for (n = 0; n < nanglelist; n++) {
|
|
i1 = anglelist[n][0];
|
|
i2 = anglelist[n][1];
|
|
i3 = anglelist[n][2];
|
|
type = anglelist[n][3];
|
|
|
|
// 1st bond
|
|
|
|
delx1 = x[i1][0] - x[i2][0];
|
|
dely1 = x[i1][1] - x[i2][1];
|
|
delz1 = x[i1][2] - x[i2][2];
|
|
domain->minimum_image(delx1,dely1,delz1);
|
|
|
|
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
|
|
r1 = sqrt(rsq1);
|
|
|
|
// 2nd bond
|
|
|
|
delx2 = x[i3][0] - x[i2][0];
|
|
dely2 = x[i3][1] - x[i2][1];
|
|
delz2 = x[i3][2] - x[i2][2];
|
|
domain->minimum_image(delx2,dely2,delz2);
|
|
|
|
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
|
|
r2 = sqrt(rsq2);
|
|
|
|
// angle (cos and sin)
|
|
|
|
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
|
|
c /= r1*r2;
|
|
|
|
if (c > 1.0) c = 1.0;
|
|
if (c < -1.0) c = -1.0;
|
|
|
|
s = sqrt(1.0 - c*c);
|
|
if (s < SMALL) s = SMALL;
|
|
s = 1.0/s;
|
|
|
|
// 1-3 LJ interaction.
|
|
// we only want to use the repulsive part,
|
|
// so this has to be done here and not in the
|
|
// general non-bonded code.
|
|
delx3 = x[i1][0] - x[i3][0];
|
|
dely3 = x[i1][1] - x[i3][1];
|
|
delz3 = x[i1][2] - x[i3][2];
|
|
domain->minimum_image(delx3,dely3,delz3);
|
|
rsq3 = delx3*delx3 + dely3*dely3 + delz3*delz3;
|
|
r3 = sqrt(rsq3);
|
|
|
|
f13=0.0;
|
|
e13=0.0;
|
|
|
|
if (r3 < rcut[type]) {
|
|
const int cgt = cg_type[type];
|
|
const double cgpow1 = cg_pow1[cgt];
|
|
const double cgpow2 = cg_pow2[cgt];
|
|
const double cgpref = cg_prefact[cgt];
|
|
|
|
const double ratio = sigma[type]/r3;
|
|
const double eps = epsilon[type];
|
|
|
|
f13 = cgpref*eps / rsq3 * (cgpow1*pow(ratio,cgpow1)
|
|
- cgpow2*pow(ratio,cgpow2));
|
|
|
|
if (eflag) e13 = eps + cgpref*eps * (pow(ratio,cgpow1)
|
|
- pow(ratio,cgpow2));
|
|
|
|
}
|
|
|
|
// force & energy
|
|
|
|
dtheta = acos(c) - theta0[type];
|
|
tk = k[type] * dtheta;
|
|
|
|
if (eflag) eangle = tk*dtheta;
|
|
|
|
a = -2.0 * tk * s;
|
|
a11 = a*c / rsq1;
|
|
a12 = -a / (r1*r2);
|
|
a22 = a*c / rsq2;
|
|
|
|
f1[0] = a11*delx1 + a12*delx2;
|
|
f1[1] = a11*dely1 + a12*dely2;
|
|
f1[2] = a11*delz1 + a12*delz2;
|
|
f3[0] = a22*delx2 + a12*delx1;
|
|
f3[1] = a22*dely2 + a12*dely1;
|
|
f3[2] = a22*delz2 + a12*delz1;
|
|
|
|
// apply force to each of 3 atoms
|
|
|
|
if (newton_bond || i1 < nlocal) {
|
|
f[i1][0] += f1[0] + f13*delx3;
|
|
f[i1][1] += f1[1] + f13*dely3;
|
|
f[i1][2] += f1[2] + f13*delz3;
|
|
}
|
|
|
|
if (newton_bond || i2 < nlocal) {
|
|
f[i2][0] -= f1[0] + f3[0];
|
|
f[i2][1] -= f1[1] + f3[1];
|
|
f[i2][2] -= f1[2] + f3[2];
|
|
}
|
|
|
|
if (newton_bond || i3 < nlocal) {
|
|
f[i3][0] += f3[0] - f13*delx3;
|
|
f[i3][1] += f3[1] - f13*dely3;
|
|
f[i3][2] += f3[2] - f13*delz3;
|
|
}
|
|
|
|
if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3,
|
|
delx1,dely1,delz1,delx2,dely2,delz2);
|
|
|
|
if (evflag) ev_tally_lj13(i1,i3,nlocal,newton_bond,
|
|
e13,f13,delx3,dely3,delz3);
|
|
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void AngleCGCMM::allocate()
|
|
{
|
|
allocated = 1;
|
|
int n = atom->nangletypes;
|
|
|
|
memory->create(k,n+1,"angle:k");
|
|
memory->create(theta0,n+1,"angle:theta0");
|
|
memory->create(epsilon,n+1,"angle:epsilon");
|
|
memory->create(sigma,n+1,"angle:sigma");
|
|
memory->create(rcut,n+1,"angle:rcut");
|
|
|
|
memory->create(cg_type,n+1,"angle:cg_type");
|
|
memory->create(setflag,n+1,"angle:setflag");
|
|
for (int i = 1; i <= n; i++) {
|
|
cg_type[i] = CG_NOT_SET;
|
|
setflag[i] = 0;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set coeffs for one or more types
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleCGCMM::coeff(int narg, char **arg)
|
|
{
|
|
if (narg != 6) error->all("Incorrect args for angle coefficients");
|
|
if (!allocated) allocate();
|
|
|
|
int ilo,ihi;
|
|
force->bounds(arg[0],atom->nangletypes,ilo,ihi);
|
|
|
|
double k_one = atof(arg[1]);
|
|
double theta0_one = atof(arg[2]);
|
|
|
|
int cg_type_one=find_cg_type(arg[3]);
|
|
if (cg_type_one == CG_NOT_SET) error->all("Error reading CG type flag.");
|
|
|
|
double epsilon_one = atof(arg[4]);
|
|
double sigma_one = atof(arg[5]);
|
|
|
|
// find minimum of LJ potential. we only want to include
|
|
// the repulsive part of the 1-3 LJ.
|
|
double rcut_one = sigma_one*exp(
|
|
1.0/(cg_pow1[cg_type_one]-cg_pow2[cg_type_one])
|
|
*log(cg_pow1[cg_type_one]/cg_pow2[cg_type_one])
|
|
);
|
|
|
|
int count = 0;
|
|
for (int i = ilo; i <= ihi; i++) {
|
|
k[i] = k_one;
|
|
// convert theta0 from degrees to radians
|
|
theta0[i] = theta0_one/180.0 * PI;
|
|
epsilon[i] = epsilon_one;
|
|
sigma[i] = sigma_one;
|
|
rcut[i] = rcut_one;
|
|
cg_type[i] = cg_type_one;
|
|
setflag[i] = 1;
|
|
count++;
|
|
}
|
|
|
|
if (count == 0) error->all("Incorrect args for angle coefficients");
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double AngleCGCMM::equilibrium_angle(int i)
|
|
{
|
|
return theta0[i];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes out coeffs to restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleCGCMM::write_restart(FILE *fp)
|
|
{
|
|
fwrite(&k[1],sizeof(double),atom->nangletypes,fp);
|
|
fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp);
|
|
fwrite(&epsilon[1],sizeof(double),atom->nangletypes,fp);
|
|
fwrite(&sigma[1],sizeof(double),atom->nangletypes,fp);
|
|
fwrite(&rcut[1],sizeof(double),atom->nangletypes,fp);
|
|
fwrite(&cg_type[1],sizeof(int),atom->nangletypes,fp);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 reads coeffs from restart file, bcasts them
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleCGCMM::read_restart(FILE *fp)
|
|
{
|
|
allocate();
|
|
|
|
if (comm->me == 0) {
|
|
fread(&k[1],sizeof(double),atom->nangletypes,fp);
|
|
fread(&theta0[1],sizeof(double),atom->nangletypes,fp);
|
|
fread(&epsilon[1],sizeof(double),atom->nangletypes,fp);
|
|
fread(&sigma[1],sizeof(double),atom->nangletypes,fp);
|
|
fread(&rcut[1],sizeof(double),atom->nangletypes,fp);
|
|
fread(&cg_type[1],sizeof(int),atom->nangletypes,fp);
|
|
}
|
|
MPI_Bcast(&k[1],atom->nangletypes,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&epsilon[1],atom->nangletypes,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&sigma[1],atom->nangletypes,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&rcut[1],atom->nangletypes,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&cg_type[1],atom->nangletypes,MPI_INT,0,world);
|
|
|
|
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double AngleCGCMM::single(int type, int i1, int i2, int i3)
|
|
{
|
|
double **x = atom->x;
|
|
|
|
double delx1 = x[i1][0] - x[i2][0];
|
|
double dely1 = x[i1][1] - x[i2][1];
|
|
double delz1 = x[i1][2] - x[i2][2];
|
|
domain->minimum_image(delx1,dely1,delz1);
|
|
double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
|
|
|
|
double delx2 = x[i3][0] - x[i2][0];
|
|
double dely2 = x[i3][1] - x[i2][1];
|
|
double delz2 = x[i3][2] - x[i2][2];
|
|
domain->minimum_image(delx2,dely2,delz2);
|
|
double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
|
|
|
|
double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
|
|
c /= r1*r2;
|
|
if (c > 1.0) c = 1.0;
|
|
if (c < -1.0) c = -1.0;
|
|
|
|
// 1-3 LJ interaction.
|
|
double delx3 = x[i1][0] - x[i3][0];
|
|
double dely3 = x[i1][1] - x[i3][1];
|
|
double delz3 = x[i1][2] - x[i3][2];
|
|
domain->minimum_image(delx3,dely3,delz3);
|
|
|
|
const double r3 = sqrt(delx3*delx3 + dely3*dely3 + delz3*delz3);
|
|
|
|
double e13=0.0;
|
|
|
|
if (r3 < rcut[type]) {
|
|
const int cgt = cg_type[type];
|
|
const double cgpow1 = cg_pow1[cgt];
|
|
const double cgpow2 = cg_pow2[cgt];
|
|
const double cgpref = cg_prefact[cgt];
|
|
|
|
const double ratio = sigma[type]/r3;
|
|
const double eps = epsilon[type];
|
|
|
|
e13 = eps + cgpref*eps * (pow(ratio,cgpow1)
|
|
- pow(ratio,cgpow2));
|
|
}
|
|
|
|
double dtheta = acos(c) - theta0[type];
|
|
double tk = k[type] * dtheta;
|
|
return tk*dtheta + e13;
|
|
}
|