Files
lammps/src/atom_vec.cpp
2022-06-02 12:55:47 -04:00

2471 lines
75 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "atom_vec.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "error.h"
#include "fix.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "modify.h"
#include "tokenizer.h"
#include <cstring>
using namespace LAMMPS_NS;
// peratom variables that are auto-included in corresponding child style field lists
// these fields cannot be specified in the fields strings
const std::vector<std::string> AtomVec::default_grow = {"id", "type", "mask", "image",
"x", "v", "f"};
const std::vector<std::string> AtomVec::default_copy = {"id", "type", "mask", "image", "x", "v"};
const std::vector<std::string> AtomVec::default_comm = {"x"};
const std::vector<std::string> AtomVec::default_comm_vel = {"x", "v"};
const std::vector<std::string> AtomVec::default_reverse = {"f"};
const std::vector<std::string> AtomVec::default_border = {"id", "type", "mask", "x"};
const std::vector<std::string> AtomVec::default_border_vel = {"id", "type", "mask", "x", "v"};
const std::vector<std::string> AtomVec::default_exchange = {"id", "type", "mask",
"image", "x", "v"};
const std::vector<std::string> AtomVec::default_restart = {"id", "type", "mask", "image", "x", "v"};
const std::vector<std::string> AtomVec::default_create = {"id", "type", "mask", "image", "x", "v"};
const std::vector<std::string> AtomVec::default_data_atom = {};
const std::vector<std::string> AtomVec::default_data_vel = {};
/* ---------------------------------------------------------------------- */
AtomVec::AtomVec(LAMMPS *lmp) : Pointers(lmp)
{
nmax = 0;
ngrow = 0;
molecular = Atom::ATOMIC;
bonds_allow = angles_allow = dihedrals_allow = impropers_allow = 0;
mass_type = dipole_type = PER_ATOM;
forceclearflag = 0;
maxexchange = 0;
bonus_flag = 0;
size_forward_bonus = size_border_bonus = 0;
kokkosable = 0;
nargcopy = 0;
argcopy = nullptr;
tag = nullptr;
type = mask = nullptr;
image = nullptr;
x = v = f = nullptr;
threads = nullptr;
}
/* ---------------------------------------------------------------------- */
AtomVec::~AtomVec()
{
int datatype, cols;
void *pdata;
for (int i = 0; i < nargcopy; i++) delete[] argcopy[i];
delete[] argcopy;
for (int i = 0; i < ngrow; i++) {
pdata = mgrow.pdata[i];
datatype = mgrow.datatype[i];
cols = mgrow.cols[i];
if (datatype == Atom::DOUBLE) {
if (cols == 0)
memory->destroy(*((double **) pdata));
else if (cols > 0)
memory->destroy(*((double ***) pdata));
else {
memory->destroy(*((double ***) pdata));
}
} else if (datatype == Atom::INT) {
if (cols == 0)
memory->destroy(*((int **) pdata));
else if (cols > 0)
memory->destroy(*((int ***) pdata));
else {
memory->destroy(*((int ***) pdata));
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0)
memory->destroy(*((bigint **) pdata));
else if (cols > 0)
memory->destroy(*((bigint ***) pdata));
else {
memory->destroy(*((bigint ***) pdata));
}
}
}
delete[] threads;
}
/* ----------------------------------------------------------------------
make copy of args for use by restart & replicate
------------------------------------------------------------------------- */
void AtomVec::store_args(int narg, char **arg)
{
nargcopy = narg;
if (nargcopy)
argcopy = new char *[nargcopy];
else
argcopy = nullptr;
for (int i = 0; i < nargcopy; i++) argcopy[i] = utils::strdup(arg[i]);
}
/* ----------------------------------------------------------------------
no additional args by default
------------------------------------------------------------------------- */
void AtomVec::process_args(int narg, char ** /*arg*/)
{
if (narg) error->all(FLERR, "Invalid atom_style command");
}
/* ----------------------------------------------------------------------
pull settings from Domain needed for pack_comm_vel and pack_border_vel
child classes may override this method, but should also invoke it
------------------------------------------------------------------------- */
void AtomVec::init()
{
deform_vremap = domain->deform_vremap;
deform_groupbit = domain->deform_groupbit;
h_rate = domain->h_rate;
if (lmp->kokkos != nullptr && !kokkosable)
error->all(FLERR, "KOKKOS package requires a kokkos enabled atom_style");
}
static constexpr bigint DELTA = 16384;
/* ----------------------------------------------------------------------
roundup N so it is a multiple of DELTA
error if N exceeds 32-bit int, since will be used as arg to grow()
------------------------------------------------------------------------- */
bigint AtomVec::roundup(bigint n)
{
if (n % DELTA) n = n / DELTA * DELTA + DELTA;
if (n > MAXSMALLINT) error->one(FLERR, "Too many atoms created on one or more procs");
return n;
}
/* ----------------------------------------------------------------------
grow nmax so it is a multiple of DELTA
------------------------------------------------------------------------- */
void AtomVec::grow_nmax()
{
nmax = nmax / DELTA * DELTA;
nmax += DELTA;
}
static constexpr bigint DELTA_BONUS = 8192;
/* ----------------------------------------------------------------------
grow nmax_bonus so it is a multiple of DELTA_BONUS
------------------------------------------------------------------------- */
int AtomVec::grow_nmax_bonus(int nmax_bonus)
{
nmax_bonus = nmax_bonus / DELTA_BONUS * DELTA_BONUS;
nmax_bonus += DELTA_BONUS;
return nmax_bonus;
}
/* ----------------------------------------------------------------------
grow atom arrays
n = 0 grows arrays by a chunk
n > 0 allocates arrays to size n
------------------------------------------------------------------------- */
void AtomVec::grow(int n)
{
int datatype, cols, maxcols;
void *pdata;
if (n == 0)
grow_nmax();
else
nmax = MAX(n,nmax);
atom->nmax = nmax;
if (nmax < 0 || nmax > MAXSMALLINT) error->one(FLERR, "Per-processor system is too big");
tag = memory->grow(atom->tag, nmax, "atom:tag");
type = memory->grow(atom->type, nmax, "atom:type");
mask = memory->grow(atom->mask, nmax, "atom:mask");
image = memory->grow(atom->image, nmax, "atom:image");
x = memory->grow(atom->x, nmax, 3, "atom:x");
v = memory->grow(atom->v, nmax, 3, "atom:v");
f = memory->grow(atom->f, nmax * comm->nthreads, 3, "atom:f");
for (int i = 0; i < ngrow; i++) {
pdata = mgrow.pdata[i];
datatype = mgrow.datatype[i];
cols = mgrow.cols[i];
const int nthreads = threads[i] ? comm->nthreads : 1;
if (datatype == Atom::DOUBLE) {
if (cols == 0)
memory->grow(*((double **) pdata), nmax * nthreads, "atom:dvec");
else if (cols > 0)
memory->grow(*((double ***) pdata), nmax * nthreads, cols, "atom:darray");
else {
maxcols = *(mgrow.maxcols[i]);
memory->grow(*((double ***) pdata), nmax * nthreads, maxcols, "atom:darray");
}
} else if (datatype == Atom::INT) {
if (cols == 0)
memory->grow(*((int **) pdata), nmax * nthreads, "atom:ivec");
else if (cols > 0)
memory->grow(*((int ***) pdata), nmax * nthreads, cols, "atom:iarray");
else {
maxcols = *(mgrow.maxcols[i]);
memory->grow(*((int ***) pdata), nmax * nthreads, maxcols, "atom:iarray");
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0)
memory->grow(*((bigint **) pdata), nmax * nthreads, "atom:bvec");
else if (cols > 0)
memory->grow(*((bigint ***) pdata), nmax * nthreads, cols, "atom:barray");
else {
maxcols = *(mgrow.maxcols[i]);
memory->grow(*((bigint ***) pdata), nmax * nthreads, maxcols, "atom:barray");
}
}
}
for (int iextra = 0; iextra < atom->nextra_grow; iextra++)
modify->fix[atom->extra_grow[iextra]]->grow_arrays(nmax);
grow_pointers();
}
/* ----------------------------------------------------------------------
copy atom I info to atom J
------------------------------------------------------------------------- */
void AtomVec::copy(int i, int j, int delflag)
{
int m, n, datatype, cols, collength, ncols;
void *pdata, *plength;
tag[j] = tag[i];
type[j] = type[i];
mask[j] = mask[i];
image[j] = image[i];
x[j][0] = x[i][0];
x[j][1] = x[i][1];
x[j][2] = x[i][2];
v[j][0] = v[i][0];
v[j][1] = v[i][1];
v[j][2] = v[i][2];
if (ncopy) {
for (n = 0; n < ncopy; n++) {
pdata = mcopy.pdata[n];
datatype = mcopy.datatype[n];
cols = mcopy.cols[n];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
vec[j] = vec[i];
} else if (cols > 0) {
double **array = *((double ***) pdata);
for (m = 0; m < cols; m++) array[j][m] = array[i][m];
} else {
double **array = *((double ***) pdata);
collength = mcopy.collength[n];
plength = mcopy.plength[n];
if (collength)
ncols = (*((int ***) plength))[i][collength - 1];
else
ncols = (*((int **) plength))[i];
for (m = 0; m < ncols; m++) array[j][m] = array[i][m];
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
vec[j] = vec[i];
} else if (cols > 0) {
int **array = *((int ***) pdata);
for (m = 0; m < cols; m++) array[j][m] = array[i][m];
} else {
int **array = *((int ***) pdata);
collength = mcopy.collength[n];
plength = mcopy.plength[n];
if (collength)
ncols = (*((int ***) plength))[i][collength - 1];
else
ncols = (*((int **) plength))[i];
for (m = 0; m < ncols; m++) array[j][m] = array[i][m];
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
vec[j] = vec[i];
} else if (cols > 0) {
bigint **array = *((bigint ***) pdata);
for (m = 0; m < cols; m++) array[j][m] = array[i][m];
} else {
bigint **array = *((bigint ***) pdata);
collength = mcopy.collength[n];
plength = mcopy.plength[n];
if (collength)
ncols = (*((int ***) plength))[i][collength - 1];
else
ncols = (*((int **) plength))[i];
for (m = 0; m < ncols; m++) array[j][m] = array[i][m];
}
}
}
}
if (bonus_flag) copy_bonus(i, j, delflag);
if (atom->nextra_grow)
for (int iextra = 0; iextra < atom->nextra_grow; iextra++)
modify->fix[atom->extra_grow[iextra]]->copy_arrays(i, j, delflag);
}
/* ---------------------------------------------------------------------- */
int AtomVec::pack_comm(int n, int *list, double *buf, int pbc_flag, int *pbc)
{
int i, j, m, mm, nn, datatype, cols;
double dx, dy, dz;
void *pdata;
m = 0;
if (pbc_flag == 0) {
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0];
buf[m++] = x[j][1];
buf[m++] = x[j][2];
}
} else {
if (domain->triclinic == 0) {
dx = pbc[0] * domain->xprd;
dy = pbc[1] * domain->yprd;
dz = pbc[2] * domain->zprd;
} else {
dx = pbc[0] * domain->xprd + pbc[5] * domain->xy + pbc[4] * domain->xz;
dy = pbc[1] * domain->yprd + pbc[3] * domain->yz;
dz = pbc[2] * domain->zprd;
}
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0] + dx;
buf[m++] = x[j][1] + dy;
buf[m++] = x[j][2] + dz;
}
}
if (ncomm) {
for (nn = 0; nn < ncomm; nn++) {
pdata = mcomm.pdata[nn];
datatype = mcomm.datatype[nn];
cols = mcomm.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = vec[j];
}
} else {
double **array = *((double ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) buf[m++] = array[j][mm];
}
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = ubuf(vec[j]).d;
}
} else {
int **array = *((int ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d;
}
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = ubuf(vec[j]).d;
}
} else {
bigint **array = *((bigint ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d;
}
}
}
}
}
if (bonus_flag) m += pack_comm_bonus(n, list, &buf[m]);
return m;
}
/* ---------------------------------------------------------------------- */
int AtomVec::pack_comm_vel(int n, int *list, double *buf, int pbc_flag, int *pbc)
{
int i, j, m, mm, nn, datatype, cols;
double dx, dy, dz, dvx, dvy, dvz;
void *pdata;
m = 0;
if (pbc_flag == 0) {
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0];
buf[m++] = x[j][1];
buf[m++] = x[j][2];
buf[m++] = v[j][0];
buf[m++] = v[j][1];
buf[m++] = v[j][2];
}
} else {
if (domain->triclinic == 0) {
dx = pbc[0] * domain->xprd;
dy = pbc[1] * domain->yprd;
dz = pbc[2] * domain->zprd;
} else {
dx = pbc[0] * domain->xprd + pbc[5] * domain->xy + pbc[4] * domain->xz;
dy = pbc[1] * domain->yprd + pbc[3] * domain->yz;
dz = pbc[2] * domain->zprd;
}
if (!deform_vremap) {
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0] + dx;
buf[m++] = x[j][1] + dy;
buf[m++] = x[j][2] + dz;
buf[m++] = v[j][0];
buf[m++] = v[j][1];
buf[m++] = v[j][2];
}
} else {
dvx = pbc[0] * h_rate[0] + pbc[5] * h_rate[5] + pbc[4] * h_rate[4];
dvy = pbc[1] * h_rate[1] + pbc[3] * h_rate[3];
dvz = pbc[2] * h_rate[2];
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0] + dx;
buf[m++] = x[j][1] + dy;
buf[m++] = x[j][2] + dz;
if (mask[i] & deform_groupbit) {
buf[m++] = v[j][0] + dvx;
buf[m++] = v[j][1] + dvy;
buf[m++] = v[j][2] + dvz;
} else {
buf[m++] = v[j][0];
buf[m++] = v[j][1];
buf[m++] = v[j][2];
}
}
}
}
if (ncomm_vel) {
for (nn = 0; nn < ncomm_vel; nn++) {
pdata = mcomm_vel.pdata[nn];
datatype = mcomm_vel.datatype[nn];
cols = mcomm_vel.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = vec[j];
}
} else {
double **array = *((double ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) buf[m++] = array[j][mm];
}
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = ubuf(vec[j]).d;
}
} else {
int **array = *((int ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d;
}
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = ubuf(vec[j]).d;
}
} else {
bigint **array = *((bigint ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d;
}
}
}
}
}
if (bonus_flag) m += pack_comm_bonus(n, list, &buf[m]);
return m;
}
/* ---------------------------------------------------------------------- */
void AtomVec::unpack_comm(int n, int first, double *buf)
{
int i, m, last, mm, nn, datatype, cols;
void *pdata;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
x[i][0] = buf[m++];
x[i][1] = buf[m++];
x[i][2] = buf[m++];
}
if (ncomm) {
for (nn = 0; nn < ncomm; nn++) {
pdata = mcomm.pdata[nn];
datatype = mcomm.datatype[nn];
cols = mcomm.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
for (i = first; i < last; i++) vec[i] = buf[m++];
} else {
double **array = *((double ***) pdata);
for (i = first; i < last; i++)
for (mm = 0; mm < cols; mm++) array[i][mm] = buf[m++];
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
for (i = first; i < last; i++) vec[i] = (int) ubuf(buf[m++]).i;
} else {
int **array = *((int ***) pdata);
for (i = first; i < last; i++)
for (mm = 0; mm < cols; mm++) array[i][mm] = (int) ubuf(buf[m++]).i;
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
for (i = first; i < last; i++) vec[i] = (bigint) ubuf(buf[m++]).i;
} else {
bigint **array = *((bigint ***) pdata);
for (i = first; i < last; i++)
for (mm = 0; mm < cols; mm++) array[i][mm] = (bigint) ubuf(buf[m++]).i;
}
}
}
}
if (bonus_flag) unpack_comm_bonus(n, first, &buf[m]);
}
/* ---------------------------------------------------------------------- */
void AtomVec::unpack_comm_vel(int n, int first, double *buf)
{
int i, m, last, mm, nn, datatype, cols;
void *pdata;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
x[i][0] = buf[m++];
x[i][1] = buf[m++];
x[i][2] = buf[m++];
v[i][0] = buf[m++];
v[i][1] = buf[m++];
v[i][2] = buf[m++];
}
if (ncomm_vel) {
for (nn = 0; nn < ncomm_vel; nn++) {
pdata = mcomm_vel.pdata[nn];
datatype = mcomm_vel.datatype[nn];
cols = mcomm_vel.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
for (i = first; i < last; i++) vec[i] = buf[m++];
} else {
double **array = *((double ***) pdata);
for (i = first; i < last; i++)
for (mm = 0; mm < cols; mm++) array[i][mm] = buf[m++];
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
for (i = first; i < last; i++) vec[i] = (int) ubuf(buf[m++]).i;
} else {
int **array = *((int ***) pdata);
for (i = first; i < last; i++)
for (mm = 0; mm < cols; mm++) array[i][mm] = (int) ubuf(buf[m++]).i;
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
for (i = first; i < last; i++) vec[i] = (bigint) ubuf(buf[m++]).i;
} else {
bigint **array = *((bigint ***) pdata);
for (i = first; i < last; i++)
for (mm = 0; mm < cols; mm++) array[i][mm] = (bigint) ubuf(buf[m++]).i;
}
}
}
}
if (bonus_flag) unpack_comm_bonus(n, first, &buf[m]);
}
/* ---------------------------------------------------------------------- */
int AtomVec::pack_reverse(int n, int first, double *buf)
{
int i, m, last, mm, nn, datatype, cols;
void *pdata;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
buf[m++] = f[i][0];
buf[m++] = f[i][1];
buf[m++] = f[i][2];
}
if (nreverse) {
for (nn = 0; nn < nreverse; nn++) {
pdata = mreverse.pdata[nn];
datatype = mreverse.datatype[nn];
cols = mreverse.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
for (i = first; i < last; i++) { buf[m++] = vec[i]; }
} else {
double **array = *((double ***) pdata);
for (i = first; i < last; i++) {
for (mm = 0; mm < cols; mm++) buf[m++] = array[i][mm];
}
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
for (i = first; i < last; i++) { buf[m++] = ubuf(vec[i]).d; }
} else {
int **array = *((int ***) pdata);
for (i = first; i < last; i++) {
for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[i][mm]).d;
}
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
for (i = first; i < last; i++) { buf[m++] = ubuf(vec[i]).d; }
} else {
bigint **array = *((bigint ***) pdata);
for (i = first; i < last; i++) {
for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[i][mm]).d;
}
}
}
}
}
return m;
}
/* ---------------------------------------------------------------------- */
void AtomVec::unpack_reverse(int n, int *list, double *buf)
{
int i, j, m, mm, nn, datatype, cols;
void *pdata;
m = 0;
for (i = 0; i < n; i++) {
j = list[i];
f[j][0] += buf[m++];
f[j][1] += buf[m++];
f[j][2] += buf[m++];
}
if (nreverse) {
for (nn = 0; nn < nreverse; nn++) {
pdata = mreverse.pdata[nn];
datatype = mreverse.datatype[nn];
cols = mreverse.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
vec[j] += buf[m++];
}
} else {
double **array = *((double ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) array[j][mm] += buf[m++];
}
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
vec[j] += (int) ubuf(buf[m++]).i;
}
} else {
int **array = *((int ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) array[j][mm] += (int) ubuf(buf[m++]).i;
}
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
vec[j] += (bigint) ubuf(buf[m++]).i;
}
} else {
bigint **array = *((bigint ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) array[j][mm] += (bigint) ubuf(buf[m++]).i;
}
}
}
}
}
}
/* ---------------------------------------------------------------------- */
int AtomVec::pack_border(int n, int *list, double *buf, int pbc_flag, int *pbc)
{
int i, j, m, mm, nn, datatype, cols;
double dx, dy, dz;
void *pdata;
m = 0;
if (pbc_flag == 0) {
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0];
buf[m++] = x[j][1];
buf[m++] = x[j][2];
buf[m++] = ubuf(tag[j]).d;
buf[m++] = ubuf(type[j]).d;
buf[m++] = ubuf(mask[j]).d;
}
} else {
if (domain->triclinic == 0) {
dx = pbc[0] * domain->xprd;
dy = pbc[1] * domain->yprd;
dz = pbc[2] * domain->zprd;
} else {
dx = pbc[0];
dy = pbc[1];
dz = pbc[2];
}
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0] + dx;
buf[m++] = x[j][1] + dy;
buf[m++] = x[j][2] + dz;
buf[m++] = ubuf(tag[j]).d;
buf[m++] = ubuf(type[j]).d;
buf[m++] = ubuf(mask[j]).d;
}
}
if (nborder) {
for (nn = 0; nn < nborder; nn++) {
pdata = mborder.pdata[nn];
datatype = mborder.datatype[nn];
cols = mborder.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = vec[j];
}
} else {
double **array = *((double ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) buf[m++] = array[j][mm];
}
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = ubuf(vec[j]).d;
}
} else {
int **array = *((int ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d;
}
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = ubuf(vec[j]).d;
}
} else {
bigint **array = *((bigint ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d;
}
}
}
}
}
if (bonus_flag) m += pack_border_bonus(n, list, &buf[m]);
if (atom->nextra_border)
for (int iextra = 0; iextra < atom->nextra_border; iextra++)
m += modify->fix[atom->extra_border[iextra]]->pack_border(n, list, &buf[m]);
return m;
}
/* ---------------------------------------------------------------------- */
int AtomVec::pack_border_vel(int n, int *list, double *buf, int pbc_flag, int *pbc)
{
int i, j, m, mm, nn, datatype, cols;
double dx, dy, dz, dvx, dvy, dvz;
void *pdata;
m = 0;
if (pbc_flag == 0) {
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0];
buf[m++] = x[j][1];
buf[m++] = x[j][2];
buf[m++] = ubuf(tag[j]).d;
buf[m++] = ubuf(type[j]).d;
buf[m++] = ubuf(mask[j]).d;
buf[m++] = v[j][0];
buf[m++] = v[j][1];
buf[m++] = v[j][2];
}
} else {
if (domain->triclinic == 0) {
dx = pbc[0] * domain->xprd;
dy = pbc[1] * domain->yprd;
dz = pbc[2] * domain->zprd;
} else {
dx = pbc[0];
dy = pbc[1];
dz = pbc[2];
}
if (!deform_vremap) {
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0] + dx;
buf[m++] = x[j][1] + dy;
buf[m++] = x[j][2] + dz;
buf[m++] = ubuf(tag[j]).d;
buf[m++] = ubuf(type[j]).d;
buf[m++] = ubuf(mask[j]).d;
buf[m++] = v[j][0];
buf[m++] = v[j][1];
buf[m++] = v[j][2];
}
} else {
dvx = pbc[0] * h_rate[0] + pbc[5] * h_rate[5] + pbc[4] * h_rate[4];
dvy = pbc[1] * h_rate[1] + pbc[3] * h_rate[3];
dvz = pbc[2] * h_rate[2];
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = x[j][0] + dx;
buf[m++] = x[j][1] + dy;
buf[m++] = x[j][2] + dz;
buf[m++] = ubuf(tag[j]).d;
buf[m++] = ubuf(type[j]).d;
buf[m++] = ubuf(mask[j]).d;
if (mask[i] & deform_groupbit) {
buf[m++] = v[j][0] + dvx;
buf[m++] = v[j][1] + dvy;
buf[m++] = v[j][2] + dvz;
} else {
buf[m++] = v[j][0];
buf[m++] = v[j][1];
buf[m++] = v[j][2];
}
}
}
}
if (nborder_vel) {
for (nn = 0; nn < nborder_vel; nn++) {
pdata = mborder_vel.pdata[nn];
datatype = mborder_vel.datatype[nn];
cols = mborder_vel.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = vec[j];
}
} else {
double **array = *((double ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) buf[m++] = array[j][mm];
}
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = ubuf(vec[j]).d;
}
} else {
int **array = *((int ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d;
}
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = ubuf(vec[j]).d;
}
} else {
bigint **array = *((bigint ***) pdata);
for (i = 0; i < n; i++) {
j = list[i];
for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[j][mm]).d;
}
}
}
}
}
if (bonus_flag) m += pack_border_bonus(n, list, &buf[m]);
if (atom->nextra_border)
for (int iextra = 0; iextra < atom->nextra_border; iextra++)
m += modify->fix[atom->extra_border[iextra]]->pack_border(n, list, &buf[m]);
return m;
}
/* ---------------------------------------------------------------------- */
void AtomVec::unpack_border(int n, int first, double *buf)
{
int i, m, last, mm, nn, datatype, cols;
void *pdata;
m = 0;
last = first + n;
while (last > nmax) grow(0);
for (i = first; i < last; i++) {
x[i][0] = buf[m++];
x[i][1] = buf[m++];
x[i][2] = buf[m++];
tag[i] = (tagint) ubuf(buf[m++]).i;
type[i] = (int) ubuf(buf[m++]).i;
mask[i] = (int) ubuf(buf[m++]).i;
}
if (nborder) {
for (nn = 0; nn < nborder; nn++) {
pdata = mborder.pdata[nn];
datatype = mborder.datatype[nn];
cols = mborder.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
for (i = first; i < last; i++) vec[i] = buf[m++];
} else {
double **array = *((double ***) pdata);
for (i = first; i < last; i++)
for (mm = 0; mm < cols; mm++) array[i][mm] = buf[m++];
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
for (i = first; i < last; i++) vec[i] = (int) ubuf(buf[m++]).i;
} else {
int **array = *((int ***) pdata);
for (i = first; i < last; i++)
for (mm = 0; mm < cols; mm++) array[i][mm] = (int) ubuf(buf[m++]).i;
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
for (i = first; i < last; i++) vec[i] = (bigint) ubuf(buf[m++]).i;
} else {
bigint **array = *((bigint ***) pdata);
for (i = first; i < last; i++)
for (mm = 0; mm < cols; mm++) array[i][mm] = (bigint) ubuf(buf[m++]).i;
}
}
}
}
if (bonus_flag) m += unpack_border_bonus(n, first, &buf[m]);
if (atom->nextra_border)
for (int iextra = 0; iextra < atom->nextra_border; iextra++)
m += modify->fix[atom->extra_border[iextra]]->unpack_border(n, first, &buf[m]);
}
/* ---------------------------------------------------------------------- */
void AtomVec::unpack_border_vel(int n, int first, double *buf)
{
int i, m, last, mm, nn, datatype, cols;
void *pdata;
m = 0;
last = first + n;
while (last > nmax) grow(0);
for (i = first; i < last; i++) {
x[i][0] = buf[m++];
x[i][1] = buf[m++];
x[i][2] = buf[m++];
tag[i] = (tagint) ubuf(buf[m++]).i;
type[i] = (int) ubuf(buf[m++]).i;
mask[i] = (int) ubuf(buf[m++]).i;
v[i][0] = buf[m++];
v[i][1] = buf[m++];
v[i][2] = buf[m++];
}
if (nborder_vel) {
for (nn = 0; nn < nborder_vel; nn++) {
pdata = mborder_vel.pdata[nn];
datatype = mborder_vel.datatype[nn];
cols = mborder_vel.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
for (i = first; i < last; i++) vec[i] = buf[m++];
} else {
double **array = *((double ***) pdata);
for (i = first; i < last; i++)
for (mm = 0; mm < cols; mm++) array[i][mm] = buf[m++];
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
for (i = first; i < last; i++) vec[i] = (int) ubuf(buf[m++]).i;
} else {
int **array = *((int ***) pdata);
for (i = first; i < last; i++)
for (mm = 0; mm < cols; mm++) array[i][mm] = (int) ubuf(buf[m++]).i;
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
for (i = first; i < last; i++) vec[i] = (bigint) ubuf(buf[m++]).i;
} else {
bigint **array = *((bigint ***) pdata);
for (i = first; i < last; i++)
for (mm = 0; mm < cols; mm++) array[i][mm] = (bigint) ubuf(buf[m++]).i;
}
}
}
}
if (bonus_flag) m += unpack_border_bonus(n, first, &buf[m]);
if (atom->nextra_border)
for (int iextra = 0; iextra < atom->nextra_border; iextra++)
m += modify->fix[atom->extra_border[iextra]]->unpack_border(n, first, &buf[m]);
}
/* ----------------------------------------------------------------------
pack data for atom I for sending to another proc
xyz must be 1st 3 values, so comm::exchange() can test on them
------------------------------------------------------------------------- */
int AtomVec::pack_exchange(int i, double *buf)
{
int mm, nn, datatype, cols, collength, ncols;
void *pdata, *plength;
int m = 1;
buf[m++] = x[i][0];
buf[m++] = x[i][1];
buf[m++] = x[i][2];
buf[m++] = v[i][0];
buf[m++] = v[i][1];
buf[m++] = v[i][2];
buf[m++] = ubuf(tag[i]).d;
buf[m++] = ubuf(type[i]).d;
buf[m++] = ubuf(mask[i]).d;
buf[m++] = ubuf(image[i]).d;
if (nexchange) {
for (nn = 0; nn < nexchange; nn++) {
pdata = mexchange.pdata[nn];
datatype = mexchange.datatype[nn];
cols = mexchange.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
buf[m++] = vec[i];
} else if (cols > 0) {
double **array = *((double ***) pdata);
for (mm = 0; mm < cols; mm++) buf[m++] = array[i][mm];
} else {
double **array = *((double ***) pdata);
collength = mexchange.collength[nn];
plength = mexchange.plength[nn];
if (collength)
ncols = (*((int ***) plength))[i][collength - 1];
else
ncols = (*((int **) plength))[i];
for (mm = 0; mm < ncols; mm++) buf[m++] = array[i][mm];
}
}
if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
buf[m++] = ubuf(vec[i]).d;
} else if (cols > 0) {
int **array = *((int ***) pdata);
for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[i][mm]).d;
} else {
int **array = *((int ***) pdata);
collength = mexchange.collength[nn];
plength = mexchange.plength[nn];
if (collength)
ncols = (*((int ***) plength))[i][collength - 1];
else
ncols = (*((int **) plength))[i];
for (mm = 0; mm < ncols; mm++) buf[m++] = ubuf(array[i][mm]).d;
}
}
if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
buf[m++] = ubuf(vec[i]).d;
} else if (cols > 0) {
bigint **array = *((bigint ***) pdata);
for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[i][mm]).d;
} else {
bigint **array = *((bigint ***) pdata);
collength = mexchange.collength[nn];
plength = mexchange.plength[nn];
if (collength)
ncols = (*((int ***) plength))[i][collength - 1];
else
ncols = (*((int **) plength))[i];
for (mm = 0; mm < ncols; mm++) buf[m++] = ubuf(array[i][mm]).d;
}
}
}
}
if (bonus_flag) m += pack_exchange_bonus(i, &buf[m]);
if (atom->nextra_grow)
for (int iextra = 0; iextra < atom->nextra_grow; iextra++)
m += modify->fix[atom->extra_grow[iextra]]->pack_exchange(i, &buf[m]);
buf[0] = m;
return m;
}
/* ---------------------------------------------------------------------- */
int AtomVec::unpack_exchange(double *buf)
{
int mm, nn, datatype, cols, collength, ncols;
void *pdata, *plength;
int nlocal = atom->nlocal;
if (nlocal == nmax) grow(0);
int m = 1;
x[nlocal][0] = buf[m++];
x[nlocal][1] = buf[m++];
x[nlocal][2] = buf[m++];
v[nlocal][0] = buf[m++];
v[nlocal][1] = buf[m++];
v[nlocal][2] = buf[m++];
tag[nlocal] = (tagint) ubuf(buf[m++]).i;
type[nlocal] = (int) ubuf(buf[m++]).i;
mask[nlocal] = (int) ubuf(buf[m++]).i;
image[nlocal] = (imageint) ubuf(buf[m++]).i;
if (nexchange) {
for (nn = 0; nn < nexchange; nn++) {
pdata = mexchange.pdata[nn];
datatype = mexchange.datatype[nn];
cols = mexchange.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
vec[nlocal] = buf[m++];
} else if (cols > 0) {
double **array = *((double ***) pdata);
for (mm = 0; mm < cols; mm++) array[nlocal][mm] = buf[m++];
} else {
double **array = *((double ***) pdata);
collength = mexchange.collength[nn];
plength = mexchange.plength[nn];
if (collength)
ncols = (*((int ***) plength))[nlocal][collength - 1];
else
ncols = (*((int **) plength))[nlocal];
for (mm = 0; mm < ncols; mm++) array[nlocal][mm] = buf[m++];
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
vec[nlocal] = (int) ubuf(buf[m++]).i;
} else if (cols > 0) {
int **array = *((int ***) pdata);
for (mm = 0; mm < cols; mm++) array[nlocal][mm] = (int) ubuf(buf[m++]).i;
} else {
int **array = *((int ***) pdata);
collength = mexchange.collength[nn];
plength = mexchange.plength[nn];
if (collength)
ncols = (*((int ***) plength))[nlocal][collength - 1];
else
ncols = (*((int **) plength))[nlocal];
for (mm = 0; mm < ncols; mm++) array[nlocal][mm] = (int) ubuf(buf[m++]).i;
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
vec[nlocal] = (bigint) ubuf(buf[m++]).i;
} else if (cols > 0) {
bigint **array = *((bigint ***) pdata);
for (mm = 0; mm < cols; mm++) array[nlocal][mm] = (bigint) ubuf(buf[m++]).i;
} else {
bigint **array = *((bigint ***) pdata);
collength = mexchange.collength[nn];
plength = mexchange.plength[nn];
if (collength)
ncols = (*((int ***) plength))[nlocal][collength - 1];
else
ncols = (*((int **) plength))[nlocal];
for (mm = 0; mm < ncols; mm++) array[nlocal][mm] = (bigint) ubuf(buf[m++]).i;
}
}
}
}
if (bonus_flag) m += unpack_exchange_bonus(nlocal, &buf[m]);
if (atom->nextra_grow)
for (int iextra = 0; iextra < atom->nextra_grow; iextra++)
m += modify->fix[atom->extra_grow[iextra]]->unpack_exchange(nlocal, &buf[m]);
atom->nlocal++;
return m;
}
/* ----------------------------------------------------------------------
size of restart data for all atoms owned by this proc
include extra data stored by fixes
------------------------------------------------------------------------- */
int AtomVec::size_restart()
{
int i, nn, cols, collength, ncols;
void *plength;
// NOTE: need to worry about overflow of returned int N
int nlocal = atom->nlocal;
// 11 = length storage + id,type,mask,image,x,v
int n = 11 * nlocal;
if (nrestart) {
for (nn = 0; nn < nrestart; nn++) {
cols = mrestart.cols[nn];
if (cols == 0)
n += nlocal;
else if (cols > 0)
n += cols * nlocal;
else {
collength = mrestart.collength[nn];
plength = mrestart.plength[nn];
for (i = 0; i < nlocal; i++) {
if (collength)
ncols = (*((int ***) plength))[i][collength - 1];
else
ncols = (*((int **) plength))[i];
n += ncols;
}
}
}
}
if (bonus_flag) n += size_restart_bonus();
if (atom->nextra_restart)
for (int iextra = 0; iextra < atom->nextra_restart; iextra++)
for (i = 0; i < nlocal; i++) n += modify->fix[atom->extra_restart[iextra]]->size_restart(i);
return n;
}
/* ----------------------------------------------------------------------
pack atom I's data for restart file including extra quantities
xyz must be 1st 3 values, so that read_restart can test on them
molecular types may be negative, but write as positive
------------------------------------------------------------------------- */
int AtomVec::pack_restart(int i, double *buf)
{
int mm, nn, datatype, cols, collength, ncols;
void *pdata, *plength;
// if needed, change values before packing
pack_restart_pre(i);
int m = 1;
buf[m++] = x[i][0];
buf[m++] = x[i][1];
buf[m++] = x[i][2];
buf[m++] = ubuf(tag[i]).d;
buf[m++] = ubuf(type[i]).d;
buf[m++] = ubuf(mask[i]).d;
buf[m++] = ubuf(image[i]).d;
buf[m++] = v[i][0];
buf[m++] = v[i][1];
buf[m++] = v[i][2];
for (nn = 0; nn < nrestart; nn++) {
pdata = mrestart.pdata[nn];
datatype = mrestart.datatype[nn];
cols = mrestart.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
buf[m++] = vec[i];
} else if (cols > 0) {
double **array = *((double ***) pdata);
for (mm = 0; mm < cols; mm++) buf[m++] = array[i][mm];
} else {
double **array = *((double ***) pdata);
collength = mrestart.collength[nn];
plength = mrestart.plength[nn];
if (collength)
ncols = (*((int ***) plength))[i][collength - 1];
else
ncols = (*((int **) plength))[i];
for (mm = 0; mm < ncols; mm++) buf[m++] = array[i][mm];
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
buf[m++] = ubuf(vec[i]).d;
} else if (cols > 0) {
int **array = *((int ***) pdata);
for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[i][mm]).d;
} else {
int **array = *((int ***) pdata);
collength = mrestart.collength[nn];
plength = mrestart.plength[nn];
if (collength)
ncols = (*((int ***) plength))[i][collength - 1];
else
ncols = (*((int **) plength))[i];
for (mm = 0; mm < ncols; mm++) buf[m++] = ubuf(array[i][mm]).d;
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
buf[m++] = ubuf(vec[i]).d;
} else if (cols > 0) {
bigint **array = *((bigint ***) pdata);
for (mm = 0; mm < cols; mm++) buf[m++] = ubuf(array[i][mm]).d;
} else {
bigint **array = *((bigint ***) pdata);
collength = mrestart.collength[nn];
plength = mrestart.plength[nn];
if (collength)
ncols = (*((int ***) plength))[i][collength - 1];
else
ncols = (*((int **) plength))[i];
for (mm = 0; mm < ncols; mm++) buf[m++] = ubuf(array[i][mm]).d;
}
}
}
if (bonus_flag) m += pack_restart_bonus(i, &buf[m]);
// if needed, restore values after packing
pack_restart_post(i);
// invoke fixes which store peratom restart info
for (int iextra = 0; iextra < atom->nextra_restart; iextra++)
m += modify->fix[atom->extra_restart[iextra]]->pack_restart(i, &buf[m]);
buf[0] = m;
return m;
}
/* ----------------------------------------------------------------------
unpack data for one atom from restart file including extra quantities
------------------------------------------------------------------------- */
int AtomVec::unpack_restart(double *buf)
{
int mm, nn, datatype, cols, collength, ncols;
void *pdata, *plength;
int nlocal = atom->nlocal;
if (nlocal == nmax) {
grow(0);
if (atom->nextra_store) memory->grow(atom->extra, nmax, atom->nextra_store, "atom:extra");
}
int m = 1;
x[nlocal][0] = buf[m++];
x[nlocal][1] = buf[m++];
x[nlocal][2] = buf[m++];
tag[nlocal] = (tagint) ubuf(buf[m++]).i;
type[nlocal] = (int) ubuf(buf[m++]).i;
mask[nlocal] = (int) ubuf(buf[m++]).i;
image[nlocal] = (imageint) ubuf(buf[m++]).i;
v[nlocal][0] = buf[m++];
v[nlocal][1] = buf[m++];
v[nlocal][2] = buf[m++];
for (nn = 0; nn < nrestart; nn++) {
pdata = mrestart.pdata[nn];
datatype = mrestart.datatype[nn];
cols = mrestart.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
vec[nlocal] = buf[m++];
} else if (cols > 0) {
double **array = *((double ***) pdata);
for (mm = 0; mm < cols; mm++) array[nlocal][mm] = buf[m++];
} else {
double **array = *((double ***) pdata);
collength = mrestart.collength[nn];
plength = mrestart.plength[nn];
if (collength)
ncols = (*((int ***) plength))[nlocal][collength - 1];
else
ncols = (*((int **) plength))[nlocal];
for (mm = 0; mm < ncols; mm++) array[nlocal][mm] = buf[m++];
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
vec[nlocal] = (int) ubuf(buf[m++]).i;
} else if (cols > 0) {
int **array = *((int ***) pdata);
for (mm = 0; mm < cols; mm++) array[nlocal][mm] = (int) ubuf(buf[m++]).i;
} else {
int **array = *((int ***) pdata);
collength = mrestart.collength[nn];
plength = mrestart.plength[nn];
if (collength)
ncols = (*((int ***) plength))[nlocal][collength - 1];
else
ncols = (*((int **) plength))[nlocal];
for (mm = 0; mm < ncols; mm++) array[nlocal][mm] = (int) ubuf(buf[m++]).i;
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
vec[nlocal] = (bigint) ubuf(buf[m++]).i;
} else if (cols > 0) {
bigint **array = *((bigint ***) pdata);
for (mm = 0; mm < cols; mm++) array[nlocal][mm] = (bigint) ubuf(buf[m++]).i;
} else {
bigint **array = *((bigint ***) pdata);
collength = mrestart.collength[nn];
plength = mrestart.plength[nn];
if (collength)
ncols = (*((int ***) plength))[nlocal][collength - 1];
else
ncols = (*((int **) plength))[nlocal];
for (mm = 0; mm < ncols; mm++) array[nlocal][mm] = (bigint) ubuf(buf[m++]).i;
}
}
}
if (bonus_flag) m += unpack_restart_bonus(nlocal, &buf[m]);
// if needed, initialize other peratom values
unpack_restart_init(nlocal);
// store extra restart info which fixes can unpack when instantiated
double **extra = atom->extra;
if (atom->nextra_store) {
int size = static_cast<int>(buf[0]) - m;
for (int i = 0; i < size; i++) extra[nlocal][i] = buf[m++];
}
atom->nlocal++;
return m;
}
/* ----------------------------------------------------------------------
create one atom of itype at coord
set other values to defaults
------------------------------------------------------------------------- */
void AtomVec::create_atom(int itype, double *coord)
{
int m, n, datatype, cols;
void *pdata;
int nlocal = atom->nlocal;
if (nlocal == nmax) grow(0);
tag[nlocal] = 0;
type[nlocal] = itype;
x[nlocal][0] = coord[0];
x[nlocal][1] = coord[1];
x[nlocal][2] = coord[2];
mask[nlocal] = 1;
image[nlocal] = ((imageint) IMGMAX << IMG2BITS) | ((imageint) IMGMAX << IMGBITS) | IMGMAX;
v[nlocal][0] = 0.0;
v[nlocal][1] = 0.0;
v[nlocal][2] = 0.0;
// initialization additional fields
for (n = 0; n < ncreate; n++) {
pdata = mcreate.pdata[n];
datatype = mcreate.datatype[n];
cols = mcreate.cols[n];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
vec[nlocal] = 0.0;
} else {
double **array = *((double ***) pdata);
for (m = 0; m < cols; m++) array[nlocal][m] = 0.0;
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
vec[nlocal] = 0;
} else {
int **array = *((int ***) pdata);
for (m = 0; m < cols; m++) array[nlocal][m] = 0;
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
vec[nlocal] = 0;
} else {
bigint **array = *((bigint ***) pdata);
for (m = 0; m < cols; m++) array[nlocal][m] = 0;
}
}
}
// if needed, initialize non-zero peratom values
create_atom_post(nlocal);
atom->nlocal++;
}
/* ----------------------------------------------------------------------
unpack one line from Atoms section of data file
initialize other peratom quantities
------------------------------------------------------------------------- */
void AtomVec::data_atom(double *coord, imageint imagetmp, const std::vector<std::string> &values)
{
int m, n, datatype, cols;
void *pdata;
int nlocal = atom->nlocal;
if (nlocal == nmax) grow(0);
x[nlocal][0] = coord[0];
x[nlocal][1] = coord[1];
x[nlocal][2] = coord[2];
mask[nlocal] = 1;
image[nlocal] = imagetmp;
v[nlocal][0] = 0.0;
v[nlocal][1] = 0.0;
v[nlocal][2] = 0.0;
int ivalue = 0;
for (n = 0; n < ndata_atom; n++) {
pdata = mdata_atom.pdata[n];
datatype = mdata_atom.datatype[n];
cols = mdata_atom.cols[n];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
vec[nlocal] = utils::numeric(FLERR, values[ivalue++], true, lmp);
} else {
double **array = *((double ***) pdata);
if (array == atom->x) { // x was already set by coord arg
ivalue += cols;
continue;
}
for (m = 0; m < cols; m++)
array[nlocal][m] = utils::numeric(FLERR, values[ivalue++], true, lmp);
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
vec[nlocal] = utils::inumeric(FLERR, values[ivalue++], true, lmp);
} else {
int **array = *((int ***) pdata);
for (m = 0; m < cols; m++)
array[nlocal][m] = utils::inumeric(FLERR, values[ivalue++], true, lmp);
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
vec[nlocal] = utils::bnumeric(FLERR, values[ivalue++], true, lmp);
} else {
bigint **array = *((bigint ***) pdata);
for (m = 0; m < cols; m++)
array[nlocal][m] = utils::bnumeric(FLERR, values[ivalue++], true, lmp);
}
}
}
// error checks applicable to all styles
if (tag[nlocal] <= 0) error->one(FLERR, "Invalid atom ID in Atoms section of data file");
if (type[nlocal] <= 0 || type[nlocal] > atom->ntypes)
error->one(FLERR, "Invalid atom type in Atoms section of data file");
// if needed, modify unpacked values or initialize other peratom values
data_atom_post(nlocal);
atom->nlocal++;
}
/* ----------------------------------------------------------------------
pack atom info for data file including 3 image flags
------------------------------------------------------------------------- */
void AtomVec::pack_data(double **buf)
{
int i, j, m, n, datatype, cols;
void *pdata;
int nlocal = atom->nlocal;
for (i = 0; i < nlocal; i++) {
// if needed, change values before packing
pack_data_pre(i);
j = 0;
for (n = 0; n < ndata_atom; n++) {
pdata = mdata_atom.pdata[n];
datatype = mdata_atom.datatype[n];
cols = mdata_atom.cols[n];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
buf[i][j++] = vec[i];
} else {
double **array = *((double ***) pdata);
for (m = 0; m < cols; m++) buf[i][j++] = array[i][m];
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
buf[i][j++] = ubuf(vec[i]).d;
} else {
int **array = *((int ***) pdata);
for (m = 0; m < cols; m++) buf[i][j++] = ubuf(array[i][m]).d;
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
buf[i][j++] = ubuf(vec[i]).d;
} else {
bigint **array = *((bigint ***) pdata);
for (m = 0; m < cols; m++) buf[i][j++] = ubuf(array[i][m]).d;
}
}
}
buf[i][j++] = ubuf((image[i] & IMGMASK) - IMGMAX).d;
buf[i][j++] = ubuf((image[i] >> IMGBITS & IMGMASK) - IMGMAX).d;
buf[i][j++] = ubuf((image[i] >> IMG2BITS) - IMGMAX).d;
// if needed, restore values after packing
pack_data_post(i);
}
}
/* ----------------------------------------------------------------------
write atom info to data file
id is first field, 3 image flags are final fields
------------------------------------------------------------------------- */
void AtomVec::write_data(FILE *fp, int n, double **buf)
{
int i, j, m, nn, datatype, cols;
for (i = 0; i < n; i++) {
fmt::print(fp, "{}", ubuf(buf[i][0]).i);
j = 1;
for (nn = 1; nn < ndata_atom; nn++) {
datatype = mdata_atom.datatype[nn];
cols = mdata_atom.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
fmt::print(fp, " {:.16}", buf[i][j++]);
} else {
for (m = 0; m < cols; m++) fmt::print(fp, " {}", buf[i][j++]);
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
fmt::print(fp, " {}", ubuf(buf[i][j++]).i);
} else {
for (m = 0; m < cols; m++) fmt::print(fp, " {}", ubuf(buf[i][j++]).i);
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
fmt::print(fp, " {}", ubuf(buf[i][j++]).i);
} else {
for (m = 0; m < cols; m++) fmt::print(fp, " {}", ubuf(buf[i][j++]).i);
}
}
}
fmt::print(fp, " {} {} {}\n", ubuf(buf[i][j]).i, ubuf(buf[i][j + 1]).i, ubuf(buf[i][j + 2]).i);
}
}
/* ----------------------------------------------------------------------
unpack one line from Velocities section of data file
------------------------------------------------------------------------- */
void AtomVec::data_vel(int ilocal, const std::vector<std::string> &values)
{
int m, n, datatype, cols;
void *pdata;
double **v = atom->v;
int ivalue = 1;
v[ilocal][0] = utils::numeric(FLERR, values[ivalue++], true, lmp);
v[ilocal][1] = utils::numeric(FLERR, values[ivalue++], true, lmp);
v[ilocal][2] = utils::numeric(FLERR, values[ivalue++], true, lmp);
if (ndata_vel > 2) {
for (n = 2; n < ndata_vel; n++) {
pdata = mdata_vel.pdata[n];
datatype = mdata_vel.datatype[n];
cols = mdata_vel.cols[n];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
vec[ilocal] = utils::numeric(FLERR, values[ivalue++], true, lmp);
} else {
double **array = *((double ***) pdata);
for (m = 0; m < cols; m++)
array[ilocal][m] = utils::numeric(FLERR, values[ivalue++], true, lmp);
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
vec[ilocal] = utils::inumeric(FLERR, values[ivalue++], true, lmp);
} else {
int **array = *((int ***) pdata);
for (m = 0; m < cols; m++)
array[ilocal][m] = utils::inumeric(FLERR, values[ivalue++], true, lmp);
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
vec[ilocal] = utils::bnumeric(FLERR, values[ivalue++], true, lmp);
} else {
bigint **array = *((bigint ***) pdata);
for (m = 0; m < cols; m++)
array[ilocal][m] = utils::bnumeric(FLERR, values[ivalue++], true, lmp);
}
}
}
}
}
/* ----------------------------------------------------------------------
pack velocity info for data file
------------------------------------------------------------------------- */
void AtomVec::pack_vel(double **buf)
{
int i, j, m, n, datatype, cols;
void *pdata;
int nlocal = atom->nlocal;
for (i = 0; i < nlocal; i++) {
j = 0;
for (n = 0; n < ndata_vel; n++) {
pdata = mdata_vel.pdata[n];
datatype = mdata_vel.datatype[n];
cols = mdata_vel.cols[n];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
double *vec = *((double **) pdata);
buf[i][j++] = vec[i];
} else {
double **array = *((double ***) pdata);
for (m = 0; m < cols; m++) buf[i][j++] = array[i][m];
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
int *vec = *((int **) pdata);
buf[i][j++] = ubuf(vec[i]).d;
} else {
int **array = *((int ***) pdata);
for (m = 0; m < cols; m++) buf[i][j++] = ubuf(array[i][m]).d;
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bigint *vec = *((bigint **) pdata);
buf[i][j++] = ubuf(vec[i]).d;
} else {
bigint **array = *((bigint ***) pdata);
for (m = 0; m < cols; m++) buf[i][j++] = ubuf(array[i][m]).d;
}
}
}
}
}
/* ----------------------------------------------------------------------
write velocity info to data file
id and velocity vector are first 4 fields
------------------------------------------------------------------------- */
void AtomVec::write_vel(FILE *fp, int n, double **buf)
{
int i, j, m, nn, datatype, cols;
for (i = 0; i < n; i++) {
fmt::print(fp, "{}", ubuf(buf[i][0]).i);
j = 1;
for (nn = 1; nn < ndata_vel; nn++) {
datatype = mdata_vel.datatype[nn];
cols = mdata_vel.cols[nn];
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
fmt::print(fp, " {}", buf[i][j++]);
} else {
for (m = 0; m < cols; m++) fmt::print(fp, " {}", buf[i][j++]);
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
fmt::print(fp, " {}", ubuf(buf[i][j++]).i);
} else {
for (m = 0; m < cols; m++) fmt::print(fp, " {}", ubuf(buf[i][j++]).i);
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
fmt::print(fp, " {}", ubuf(buf[i][j++]).i);
} else {
for (m = 0; m < cols; m++) fmt::print(fp, " {}", ubuf(buf[i][j++]).i);
}
}
}
fputs("\n", fp);
}
}
/* ----------------------------------------------------------------------
pack bond info for data file into buf if non-nullptr
return count of bonds from this proc
do not count/pack bonds with bondtype = 0
if bondtype is negative, flip back to positive
------------------------------------------------------------------------- */
int AtomVec::pack_bond(tagint **buf)
{
tagint *tag = atom->tag;
int *num_bond = atom->num_bond;
int **bond_type = atom->bond_type;
tagint **bond_atom = atom->bond_atom;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
int i, j;
int m = 0;
if (newton_bond) {
for (i = 0; i < nlocal; i++)
for (j = 0; j < num_bond[i]; j++) {
if (bond_type[i][j] == 0) continue;
if (buf) {
buf[m][0] = MAX(bond_type[i][j], -bond_type[i][j]);
buf[m][1] = tag[i];
buf[m][2] = bond_atom[i][j];
}
m++;
}
} else {
for (i = 0; i < nlocal; i++)
for (j = 0; j < num_bond[i]; j++)
if (tag[i] < bond_atom[i][j]) {
if (bond_type[i][j] == 0) continue;
if (buf) {
buf[m][0] = MAX(bond_type[i][j], -bond_type[i][j]);
buf[m][1] = tag[i];
buf[m][2] = bond_atom[i][j];
}
m++;
}
}
return m;
}
/* ----------------------------------------------------------------------
write bond info to data file
------------------------------------------------------------------------- */
void AtomVec::write_bond(FILE *fp, int n, tagint **buf, int index)
{
for (int i = 0; i < n; i++) {
fmt::print(fp, "{} {} {} {}\n", index, buf[i][0], buf[i][1], buf[i][2]);
index++;
}
}
/* ----------------------------------------------------------------------
pack angle info for data file into buf if non-nullptr
return count of angles from this proc
do not count/pack angles with angletype = 0
if angletype is negative, flip back to positive
------------------------------------------------------------------------- */
int AtomVec::pack_angle(tagint **buf)
{
tagint *tag = atom->tag;
int *num_angle = atom->num_angle;
int **angle_type = atom->angle_type;
tagint **angle_atom1 = atom->angle_atom1;
tagint **angle_atom2 = atom->angle_atom2;
tagint **angle_atom3 = atom->angle_atom3;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
int i, j;
int m = 0;
if (newton_bond) {
for (i = 0; i < nlocal; i++)
for (j = 0; j < num_angle[i]; j++) {
if (angle_type[i][j] == 0) continue;
if (buf) {
buf[m][0] = MAX(angle_type[i][j], -angle_type[i][j]);
buf[m][1] = angle_atom1[i][j];
buf[m][2] = angle_atom2[i][j];
buf[m][3] = angle_atom3[i][j];
}
m++;
}
} else {
for (i = 0; i < nlocal; i++)
for (j = 0; j < num_angle[i]; j++)
if (tag[i] == angle_atom2[i][j]) {
if (angle_type[i][j] == 0) continue;
if (buf) {
buf[m][0] = MAX(angle_type[i][j], -angle_type[i][j]);
buf[m][1] = angle_atom1[i][j];
buf[m][2] = angle_atom2[i][j];
buf[m][3] = angle_atom3[i][j];
}
m++;
}
}
return m;
}
/* ----------------------------------------------------------------------
write angle info to data file
------------------------------------------------------------------------- */
void AtomVec::write_angle(FILE *fp, int n, tagint **buf, int index)
{
for (int i = 0; i < n; i++) {
fmt::print(fp, "{} {} {} {} {}\n", index, buf[i][0], buf[i][1], buf[i][2], buf[i][3]);
index++;
}
}
/* ----------------------------------------------------------------------
pack dihedral info for data file
------------------------------------------------------------------------- */
int AtomVec::pack_dihedral(tagint **buf)
{
tagint *tag = atom->tag;
int *num_dihedral = atom->num_dihedral;
int **dihedral_type = atom->dihedral_type;
tagint **dihedral_atom1 = atom->dihedral_atom1;
tagint **dihedral_atom2 = atom->dihedral_atom2;
tagint **dihedral_atom3 = atom->dihedral_atom3;
tagint **dihedral_atom4 = atom->dihedral_atom4;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
int i, j;
int m = 0;
if (newton_bond) {
for (i = 0; i < nlocal; i++)
for (j = 0; j < num_dihedral[i]; j++) {
if (buf) {
buf[m][0] = MAX(dihedral_type[i][j], -dihedral_type[i][j]);
buf[m][1] = dihedral_atom1[i][j];
buf[m][2] = dihedral_atom2[i][j];
buf[m][3] = dihedral_atom3[i][j];
buf[m][4] = dihedral_atom4[i][j];
}
m++;
}
} else {
for (i = 0; i < nlocal; i++)
for (j = 0; j < num_dihedral[i]; j++)
if (tag[i] == dihedral_atom2[i][j]) {
if (buf) {
buf[m][0] = MAX(dihedral_type[i][j], -dihedral_type[i][j]);
buf[m][1] = dihedral_atom1[i][j];
buf[m][2] = dihedral_atom2[i][j];
buf[m][3] = dihedral_atom3[i][j];
buf[m][4] = dihedral_atom4[i][j];
}
m++;
}
}
return m;
}
/* ----------------------------------------------------------------------
write dihedral info to data file
------------------------------------------------------------------------- */
void AtomVec::write_dihedral(FILE *fp, int n, tagint **buf, int index)
{
for (int i = 0; i < n; i++) {
fmt::print(fp, "{} {} {} {} {} {}\n", index, buf[i][0], buf[i][1], buf[i][2], buf[i][3],
buf[i][4]);
index++;
}
}
/* ----------------------------------------------------------------------
pack improper info for data file
------------------------------------------------------------------------- */
int AtomVec::pack_improper(tagint **buf)
{
tagint *tag = atom->tag;
int *num_improper = atom->num_improper;
int **improper_type = atom->improper_type;
tagint **improper_atom1 = atom->improper_atom1;
tagint **improper_atom2 = atom->improper_atom2;
tagint **improper_atom3 = atom->improper_atom3;
tagint **improper_atom4 = atom->improper_atom4;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
int i, j;
int m = 0;
if (newton_bond) {
for (i = 0; i < nlocal; i++)
for (j = 0; j < num_improper[i]; j++) {
if (buf) {
buf[m][0] = MAX(improper_type[i][j], -improper_type[i][j]);
buf[m][1] = improper_atom1[i][j];
buf[m][2] = improper_atom2[i][j];
buf[m][3] = improper_atom3[i][j];
buf[m][4] = improper_atom4[i][j];
}
m++;
}
} else {
for (i = 0; i < nlocal; i++)
for (j = 0; j < num_improper[i]; j++)
if (tag[i] == improper_atom2[i][j]) {
if (buf) {
buf[m][0] = MAX(improper_type[i][j], -improper_type[i][j]);
buf[m][1] = improper_atom1[i][j];
buf[m][2] = improper_atom2[i][j];
buf[m][3] = improper_atom3[i][j];
buf[m][4] = improper_atom4[i][j];
}
m++;
}
}
return m;
}
/* ----------------------------------------------------------------------
write improper info to data file
------------------------------------------------------------------------- */
void AtomVec::write_improper(FILE *fp, int n, tagint **buf, int index)
{
for (int i = 0; i < n; i++) {
fmt::print(fp, "{} {} {} {} {} {}\n", index, buf[i][0], buf[i][1], buf[i][2], buf[i][3],
buf[i][4]);
index++;
}
}
/* ----------------------------------------------------------------------
return # of bytes of allocated memory
------------------------------------------------------------------------- */
double AtomVec::memory_usage()
{
int datatype, cols, maxcols;
void *pdata;
double bytes = 0;
bytes += memory->usage(tag, nmax);
bytes += memory->usage(type, nmax);
bytes += memory->usage(mask, nmax);
bytes += memory->usage(image, nmax);
bytes += memory->usage(x, nmax, 3);
bytes += memory->usage(v, nmax, 3);
bytes += memory->usage(f, nmax * comm->nthreads, 3);
for (int i = 0; i < ngrow; i++) {
pdata = mgrow.pdata[i];
datatype = mgrow.datatype[i];
cols = mgrow.cols[i];
const int nthreads = threads[i] ? comm->nthreads : 1;
if (datatype == Atom::DOUBLE) {
if (cols == 0) {
bytes += memory->usage(*((double **) pdata), nmax * nthreads);
} else if (cols > 0) {
bytes += memory->usage(*((double ***) pdata), nmax * nthreads, cols);
} else {
maxcols = *(mgrow.maxcols[i]);
bytes += memory->usage(*((double ***) pdata), nmax * nthreads, maxcols);
}
} else if (datatype == Atom::INT) {
if (cols == 0) {
bytes += memory->usage(*((int **) pdata), nmax * nthreads);
} else if (cols > 0) {
bytes += memory->usage(*((int ***) pdata), nmax * nthreads, cols);
} else {
maxcols = *(mgrow.maxcols[i]);
bytes += memory->usage(*((int ***) pdata), nmax * nthreads, maxcols);
}
} else if (datatype == Atom::BIGINT) {
if (cols == 0) {
bytes += memory->usage(*((bigint **) pdata), nmax * nthreads);
} else if (cols > 0) {
bytes += memory->usage(*((bigint ***) pdata), nmax * nthreads, cols);
} else {
maxcols = *(mgrow.maxcols[i]);
bytes += memory->usage(*((bigint ***) pdata), nmax * nthreads, maxcols);
}
}
}
if (bonus_flag) bytes += memory_usage_bonus();
return bytes;
}
// ----------------------------------------------------------------------
// internal methods
// ----------------------------------------------------------------------
/* ----------------------------------------------------------------------
process field strings to initialize data structs for all other methods
------------------------------------------------------------------------- */
void AtomVec::setup_fields()
{
int n, cols;
if ((fields_data_atom.size() < 1) || (fields_data_atom[0] != "id"))
error->all(FLERR, "Atom style fields_data_atom must have 'id' as first field");
if ((fields_data_vel.size() < 2) || (fields_data_vel[0] != "id") || (fields_data_vel[1] != "v"))
error->all(FLERR, "Atom style fields_data_vel must have 'id' and 'v' as first two fields");
// process field strings
// return # of fields and matching index into atom.peratom (in Method struct)
ngrow = process_fields(fields_grow, default_grow, &mgrow);
ncopy = process_fields(fields_copy, default_copy, &mcopy);
ncomm = process_fields(fields_comm, default_comm, &mcomm);
ncomm_vel = process_fields(fields_comm_vel, default_comm_vel, &mcomm_vel);
nreverse = process_fields(fields_reverse, default_reverse, &mreverse);
nborder = process_fields(fields_border, default_border, &mborder);
nborder_vel = process_fields(fields_border_vel, default_border_vel, &mborder_vel);
nexchange = process_fields(fields_exchange, default_exchange, &mexchange);
nrestart = process_fields(fields_restart, default_restart, &mrestart);
ncreate = process_fields(fields_create, default_create, &mcreate);
ndata_atom = process_fields(fields_data_atom, default_data_atom, &mdata_atom);
ndata_vel = process_fields(fields_data_vel, default_data_vel, &mdata_vel);
// populate field-based data struct for each method to use
init_method(ngrow, &mgrow);
init_method(ncopy, &mcopy);
init_method(ncomm, &mcomm);
init_method(ncomm_vel, &mcomm_vel);
init_method(nreverse, &mreverse);
init_method(nborder, &mborder);
init_method(nborder_vel, &mborder_vel);
init_method(nexchange, &mexchange);
init_method(nrestart, &mrestart);
init_method(ncreate, &mcreate);
init_method(ndata_atom, &mdata_atom);
init_method(ndata_vel, &mdata_vel);
// create threads data struct for grow and memory_usage to use
if (ngrow)
threads = new bool[ngrow];
else
threads = nullptr;
for (int i = 0; i < ngrow; i++) {
const auto &field = atom->peratom[mgrow.index[i]];
threads[i] = field.threadflag == 1;
}
// set style-specific sizes
comm_x_only = 1;
if (ncomm) comm_x_only = 0;
if (bonus_flag && size_forward_bonus) comm_x_only = 0;
if (nreverse == 0)
comm_f_only = 1;
else
comm_f_only = 0;
size_forward = 3;
for (n = 0; n < ncomm; n++) {
cols = mcomm.cols[n];
if (cols == 0)
size_forward++;
else
size_forward += cols;
}
if (bonus_flag) size_forward += size_forward_bonus;
size_reverse = 3;
for (n = 0; n < nreverse; n++) {
cols = mreverse.cols[n];
if (cols == 0)
size_reverse++;
else
size_reverse += cols;
}
size_border = 6;
for (n = 0; n < nborder; n++) {
cols = mborder.cols[n];
if (cols == 0)
size_border++;
else
size_border += cols;
}
if (bonus_flag) size_border += size_border_bonus;
size_velocity = 3;
for (n = 0; n < ncomm_vel; n++) {
cols = mcomm_vel.cols[n];
if (cols == 0)
size_velocity++;
else
size_velocity += cols;
}
size_data_atom = 0;
for (n = 0; n < ndata_atom; n++) {
cols = mdata_atom.cols[n];
if (atom->peratom[mdata_atom.index[n]].name == "x") xcol_data = size_data_atom + 1;
if (cols == 0)
size_data_atom++;
else
size_data_atom += cols;
}
size_data_vel = 0;
for (n = 0; n < ndata_vel; n++) {
cols = mdata_vel.cols[n];
if (cols == 0)
size_data_vel++;
else
size_data_vel += cols;
}
}
/* ----------------------------------------------------------------------
process a single field string
------------------------------------------------------------------------- */
int AtomVec::process_fields(const std::vector<std::string> &words,
const std::vector<std::string> &def_words, Method *method)
{
int nfield = words.size();
int ndef = def_words.size();
// process fields one by one, add to index vector
const auto &peratom = atom->peratom;
const int nperatom = peratom.size();
// allocate memory in method
method->resize(nfield);
std::vector<int> &index = method->index;
int match;
for (int i = 0; i < nfield; i++) {
const std::string &field = words[i];
// find field in master Atom::peratom list
for (match = 0; match < nperatom; match++)
if (field == peratom[match].name) break;
if (match == nperatom) error->all(FLERR, "Peratom field {} not recognized", field);
index[i] = match;
// error if field appears multiple times
for (match = 0; match < i; match++)
if (index[i] == index[match]) error->all(FLERR, "Peratom field {} is repeated", field);
// error if field is in default str
for (match = 0; match < ndef; match++)
if (field == def_words[match]) error->all(FLERR, "Peratom field {} is a default", field);
}
return nfield;
}
/* ----------------------------------------------------------------------
init method data structs for processing fields
------------------------------------------------------------------------- */
void AtomVec::init_method(int nfield, Method *method)
{
for (int i = 0; i < nfield; i++) {
const auto &field = atom->peratom[method->index[i]];
method->pdata[i] = (void *) field.address;
method->datatype[i] = field.datatype;
method->cols[i] = field.cols;
if (method->cols[i] < 0) {
method->maxcols[i] = field.address_maxcols;
method->collength[i] = field.collength;
method->plength[i] = field.address_length;
}
}
}
/* ----------------------------------------------------------------------
Method class members
------------------------------------------------------------------------- */
void AtomVec::Method::resize(int nfield)
{
pdata.resize(nfield);
datatype.resize(nfield);
cols.resize(nfield);
maxcols.resize(nfield);
collength.resize(nfield);
plength.resize(nfield);
index.resize(nfield);
}