Files
lammps/lib/kokkos/algorithms/unit_tests/TestRandom.hpp
2023-06-29 10:42:42 -06:00

514 lines
19 KiB
C++

//@HEADER
// ************************************************************************
//
// Kokkos v. 4.0
// Copyright (2022) National Technology & Engineering
// Solutions of Sandia, LLC (NTESS).
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions.
// See https://kokkos.org/LICENSE for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//@HEADER
#ifndef KOKKOS_ALGORITHMS_UNITTESTS_TEST_RANDOM_HPP
#define KOKKOS_ALGORITHMS_UNITTESTS_TEST_RANDOM_HPP
#include <gtest/gtest.h>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <Kokkos_DynRankView.hpp>
#include <Kokkos_Timer.hpp>
#include <Kokkos_Core.hpp>
#include <Kokkos_Random.hpp>
#include <cmath>
#include <chrono>
namespace Test {
namespace AlgoRandomImpl {
// This test runs the random number generators and uses some statistic tests to
// check the 'goodness' of the random numbers:
// (i) mean: the mean is expected to be 0.5*RAND_MAX
// (ii) variance: the variance is 1/3*mean*mean
// (iii) covariance: the covariance is 0
// (iv) 1-tupledistr: the mean, variance and covariance of a 1D Histrogram
// of random numbers (v) 3-tupledistr: the mean, variance and covariance of
// a 3D Histrogram of random numbers
#define HIST_DIM3D 24
#define HIST_DIM1D (HIST_DIM3D * HIST_DIM3D * HIST_DIM3D)
struct RandomProperties {
uint64_t count;
double mean;
double variance;
double covariance;
double min;
double max;
KOKKOS_INLINE_FUNCTION
RandomProperties() {
count = 0;
mean = 0.0;
variance = 0.0;
covariance = 0.0;
min = 1e64;
max = -1e64;
}
KOKKOS_INLINE_FUNCTION
RandomProperties& operator+=(const RandomProperties& add) {
count += add.count;
mean += add.mean;
variance += add.variance;
covariance += add.covariance;
min = add.min < min ? add.min : min;
max = add.max > max ? add.max : max;
return *this;
}
};
// FIXME_OPENMPTARGET: Need this for OpenMPTarget because contra to the standard
// llvm requires the binary operator defined not just the +=
KOKKOS_INLINE_FUNCTION
RandomProperties operator+(const RandomProperties& org,
const RandomProperties& add) {
RandomProperties val = org;
val += add;
return val;
}
template <class GeneratorPool, class Scalar>
struct test_random_functor {
using rnd_type = typename GeneratorPool::generator_type;
using value_type = RandomProperties;
using device_type = typename GeneratorPool::device_type;
GeneratorPool rand_pool;
const double mean;
// NOTE (mfh 03 Nov 2014): Kokkos::rand::max() is supposed to define
// an exclusive upper bound on the range of random numbers that
// draw() can generate. However, for the float specialization, some
// implementations might violate this upper bound, due to rounding
// error. Just in case, we leave an extra space at the end of each
// dimension, in the View types below.
using type_1d =
Kokkos::View<int[HIST_DIM1D + 1], typename GeneratorPool::device_type>;
type_1d density_1d;
using type_3d =
Kokkos::View<int[HIST_DIM3D + 1][HIST_DIM3D + 1][HIST_DIM3D + 1],
typename GeneratorPool::device_type>;
type_3d density_3d;
test_random_functor(GeneratorPool rand_pool_, type_1d d1d, type_3d d3d)
: rand_pool(rand_pool_),
mean(0.5 * Kokkos::rand<rnd_type, Scalar>::max()),
density_1d(d1d),
density_3d(d3d) {}
KOKKOS_INLINE_FUNCTION
void operator()(int /*i*/, RandomProperties& prop) const {
using Kokkos::atomic_fetch_add;
rnd_type rand_gen = rand_pool.get_state();
for (int k = 0; k < 1024; ++k) {
const Scalar tmp = Kokkos::rand<rnd_type, Scalar>::draw(rand_gen);
prop.count++;
prop.mean += tmp;
prop.variance += (tmp - mean) * (tmp - mean);
const Scalar tmp2 = Kokkos::rand<rnd_type, Scalar>::draw(rand_gen);
prop.count++;
prop.mean += tmp2;
prop.variance += (tmp2 - mean) * (tmp2 - mean);
prop.covariance += (tmp - mean) * (tmp2 - mean);
const Scalar tmp3 = Kokkos::rand<rnd_type, Scalar>::draw(rand_gen);
prop.count++;
prop.mean += tmp3;
prop.variance += (tmp3 - mean) * (tmp3 - mean);
prop.covariance += (tmp2 - mean) * (tmp3 - mean);
// NOTE (mfh 03 Nov 2014): Kokkos::rand::max() is supposed to
// define an exclusive upper bound on the range of random
// numbers that draw() can generate. However, for the float
// specialization, some implementations might violate this upper
// bound, due to rounding error. Just in case, we have left an
// extra space at the end of each dimension of density_1d and
// density_3d.
//
// Please note that those extra entries might not get counted in
// the histograms. However, if Kokkos::rand is broken and only
// returns values of max(), the histograms will still catch this
// indirectly, since none of the other values will be filled in.
const Scalar theMax = Kokkos::rand<rnd_type, Scalar>::max();
const uint64_t ind1_1d =
static_cast<uint64_t>(1.0 * HIST_DIM1D * tmp / theMax);
const uint64_t ind2_1d =
static_cast<uint64_t>(1.0 * HIST_DIM1D * tmp2 / theMax);
const uint64_t ind3_1d =
static_cast<uint64_t>(1.0 * HIST_DIM1D * tmp3 / theMax);
const uint64_t ind1_3d =
static_cast<uint64_t>(1.0 * HIST_DIM3D * tmp / theMax);
const uint64_t ind2_3d =
static_cast<uint64_t>(1.0 * HIST_DIM3D * tmp2 / theMax);
const uint64_t ind3_3d =
static_cast<uint64_t>(1.0 * HIST_DIM3D * tmp3 / theMax);
atomic_fetch_add(&density_1d(ind1_1d), 1);
atomic_fetch_add(&density_1d(ind2_1d), 1);
atomic_fetch_add(&density_1d(ind3_1d), 1);
atomic_fetch_add(&density_3d(ind1_3d, ind2_3d, ind3_3d), 1);
}
rand_pool.free_state(rand_gen);
}
};
template <class DeviceType>
struct test_histogram1d_functor {
using value_type = RandomProperties;
using execution_space = typename DeviceType::execution_space;
using memory_space = typename DeviceType::memory_space;
// NOTE (mfh 03 Nov 2014): Kokkos::rand::max() is supposed to define
// an exclusive upper bound on the range of random numbers that
// draw() can generate. However, for the float specialization, some
// implementations might violate this upper bound, due to rounding
// error. Just in case, we leave an extra space at the end of each
// dimension, in the View type below.
using type_1d = Kokkos::View<int[HIST_DIM1D + 1], memory_space>;
type_1d density_1d;
double mean;
test_histogram1d_functor(type_1d d1d, int num_draws)
: density_1d(d1d), mean(1.0 * num_draws / HIST_DIM1D * 3) {}
KOKKOS_INLINE_FUNCTION void operator()(
const typename memory_space::size_type i, RandomProperties& prop) const {
using size_type = typename memory_space::size_type;
const double count = density_1d(i);
prop.mean += count;
prop.variance += 1.0 * (count - mean) * (count - mean);
// prop.covariance += 1.0*count*count;
prop.min = count < prop.min ? count : prop.min;
prop.max = count > prop.max ? count : prop.max;
if (i < static_cast<size_type>(HIST_DIM1D - 1)) {
prop.covariance += (count - mean) * (density_1d(i + 1) - mean);
}
}
};
template <class DeviceType>
struct test_histogram3d_functor {
using value_type = RandomProperties;
using execution_space = typename DeviceType::execution_space;
using memory_space = typename DeviceType::memory_space;
// NOTE (mfh 03 Nov 2014): Kokkos::rand::max() is supposed to define
// an exclusive upper bound on the range of random numbers that
// draw() can generate. However, for the float specialization, some
// implementations might violate this upper bound, due to rounding
// error. Just in case, we leave an extra space at the end of each
// dimension, in the View type below.
using type_3d =
Kokkos::View<int[HIST_DIM3D + 1][HIST_DIM3D + 1][HIST_DIM3D + 1],
memory_space>;
type_3d density_3d;
double mean;
test_histogram3d_functor(type_3d d3d, int num_draws)
: density_3d(d3d), mean(1.0 * num_draws / HIST_DIM1D) {}
KOKKOS_INLINE_FUNCTION void operator()(
const typename memory_space::size_type i, RandomProperties& prop) const {
using size_type = typename memory_space::size_type;
const double count = density_3d(
i / (HIST_DIM3D * HIST_DIM3D),
(i % (HIST_DIM3D * HIST_DIM3D)) / HIST_DIM3D, i % HIST_DIM3D);
prop.mean += count;
prop.variance += (count - mean) * (count - mean);
if (i < static_cast<size_type>(HIST_DIM1D - 1)) {
const double count_next =
density_3d((i + 1) / (HIST_DIM3D * HIST_DIM3D),
((i + 1) % (HIST_DIM3D * HIST_DIM3D)) / HIST_DIM3D,
(i + 1) % HIST_DIM3D);
prop.covariance += (count - mean) * (count_next - mean);
}
}
};
//
// Templated test that uses the above functors.
//
template <class RandomGenerator, class Scalar>
struct test_random_scalar {
using rnd_type = typename RandomGenerator::generator_type;
test_random_scalar(
typename test_random_functor<RandomGenerator, int>::type_1d& density_1d,
typename test_random_functor<RandomGenerator, int>::type_3d& density_3d,
RandomGenerator& pool, unsigned int num_draws) {
using Kokkos::parallel_reduce;
using std::cout;
using std::endl;
{
cout << " -- Testing randomness properties" << endl;
RandomProperties result;
using functor_type = test_random_functor<RandomGenerator, Scalar>;
parallel_reduce(num_draws / 1024,
functor_type(pool, density_1d, density_3d), result);
// printf("Result: %lf %lf
// %lf\n",result.mean/num_draws/3,result.variance/num_draws/3,result.covariance/num_draws/2);
double tolerance = 1.6 * std::sqrt(1.0 / num_draws);
double mean_expect = 0.5 * Kokkos::rand<rnd_type, Scalar>::max();
double variance_expect = 1.0 / 3.0 * mean_expect * mean_expect;
double mean_eps = mean_expect / (result.mean / num_draws / 3) - 1.0;
double variance_eps =
variance_expect / (result.variance / num_draws / 3) - 1.0;
double covariance_eps =
result.covariance / num_draws / 2 / variance_expect;
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
if (!std::is_same<Scalar, Kokkos::Experimental::bhalf_t>::value) {
#endif
EXPECT_LT(std::abs(mean_eps), tolerance);
EXPECT_LT(std::abs(variance_eps), 1.5 * tolerance);
EXPECT_LT(std::abs(covariance_eps), 2.0 * tolerance);
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
}
#endif
}
{
cout << " -- Testing 1-D histogram" << endl;
RandomProperties result;
using functor_type =
test_histogram1d_functor<typename RandomGenerator::device_type>;
parallel_reduce(HIST_DIM1D, functor_type(density_1d, num_draws), result);
double mean_eps_expect = 0.0001;
double variance_eps_expect = 0.07;
double covariance_eps_expect = 0.06;
double tolerance = 6 * std::sqrt(1.0 / HIST_DIM1D);
double mean_expect = 1.0 * num_draws * 3 / HIST_DIM1D;
double variance_expect =
1.0 * num_draws * 3 / HIST_DIM1D * (1.0 - 1.0 / HIST_DIM1D);
double covariance_expect = -1.0 * num_draws * 3 / HIST_DIM1D / HIST_DIM1D;
double mean_eps = mean_expect / (result.mean / HIST_DIM1D) - 1.0;
double variance_eps =
variance_expect / (result.variance / HIST_DIM1D) - 1.0;
double covariance_eps =
(result.covariance / HIST_DIM1D - covariance_expect) / mean_expect;
#if defined(KOKKOS_HALF_T_IS_FLOAT) && !KOKKOS_HALF_T_IS_FLOAT
if (std::is_same<Scalar, Kokkos::Experimental::half_t>::value) {
mean_eps_expect = 0.0003;
variance_eps_expect = 1.0;
covariance_eps_expect = 5.0e4;
}
#endif
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
if (!std::is_same<Scalar, Kokkos::Experimental::bhalf_t>::value) {
#endif
EXPECT_LT(std::abs(mean_eps), mean_eps_expect);
EXPECT_LT(std::abs(variance_eps), variance_eps_expect);
EXPECT_LT(std::abs(covariance_eps), covariance_eps_expect);
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
}
#endif
cout << "Density 1D: " << mean_eps << " " << variance_eps << " "
<< (result.covariance / HIST_DIM1D / HIST_DIM1D) << " || "
<< tolerance << " " << result.min << " " << result.max << " || "
<< result.variance / HIST_DIM1D << " "
<< 1.0 * num_draws * 3 / HIST_DIM1D * (1.0 - 1.0 / HIST_DIM1D)
<< " || " << result.covariance / HIST_DIM1D << " "
<< -1.0 * num_draws * 3 / HIST_DIM1D / HIST_DIM1D << endl;
}
{
cout << " -- Testing 3-D histogram" << endl;
RandomProperties result;
using functor_type =
test_histogram3d_functor<typename RandomGenerator::device_type>;
parallel_reduce(HIST_DIM1D, functor_type(density_3d, num_draws), result);
double variance_factor = 1.2;
double tolerance = 6 * std::sqrt(1.0 / HIST_DIM1D);
double mean_expect = 1.0 * num_draws / HIST_DIM1D;
double variance_expect =
1.0 * num_draws / HIST_DIM1D * (1.0 - 1.0 / HIST_DIM1D);
double covariance_expect = -1.0 * num_draws / HIST_DIM1D / HIST_DIM1D;
double mean_eps = mean_expect / (result.mean / HIST_DIM1D) - 1.0;
double variance_eps =
variance_expect / (result.variance / HIST_DIM1D) - 1.0;
double covariance_eps =
(result.covariance / HIST_DIM1D - covariance_expect) / mean_expect;
#if defined(KOKKOS_HALF_T_IS_FLOAT) && !KOKKOS_HALF_T_IS_FLOAT
if (std::is_same<Scalar, Kokkos::Experimental::half_t>::value) {
variance_factor = 7;
}
#endif
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
if (!std::is_same<Scalar, Kokkos::Experimental::bhalf_t>::value) {
#endif
EXPECT_LT(std::abs(mean_eps), tolerance);
EXPECT_LT(std::abs(variance_eps), variance_factor);
EXPECT_LT(std::abs(covariance_eps), variance_factor);
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
}
#endif
cout << "Density 3D: " << mean_eps << " " << variance_eps << " "
<< result.covariance / HIST_DIM1D / HIST_DIM1D << " || " << tolerance
<< " " << result.min << " " << result.max << endl;
}
}
};
template <class RandomGenerator>
void test_random(unsigned int num_draws) {
using std::cout;
using std::endl;
typename test_random_functor<RandomGenerator, int>::type_1d density_1d("D1d");
typename test_random_functor<RandomGenerator, int>::type_3d density_3d("D3d");
uint64_t ticks =
std::chrono::high_resolution_clock::now().time_since_epoch().count();
cout << "Test Seed:" << ticks << endl;
RandomGenerator pool(ticks);
cout << "Test Scalar=int" << endl;
test_random_scalar<RandomGenerator, int> test_int(density_1d, density_3d,
pool, num_draws);
deep_copy(density_1d, 0);
deep_copy(density_3d, 0);
cout << "Test Scalar=unsigned int" << endl;
test_random_scalar<RandomGenerator, unsigned int> test_uint(
density_1d, density_3d, pool, num_draws);
deep_copy(density_1d, 0);
deep_copy(density_3d, 0);
cout << "Test Scalar=int64_t" << endl;
test_random_scalar<RandomGenerator, int64_t> test_int64(
density_1d, density_3d, pool, num_draws);
deep_copy(density_1d, 0);
deep_copy(density_3d, 0);
cout << "Test Scalar=uint64_t" << endl;
test_random_scalar<RandomGenerator, uint64_t> test_uint64(
density_1d, density_3d, pool, num_draws);
deep_copy(density_1d, 0);
deep_copy(density_3d, 0);
cout << "Test Scalar=half" << endl;
test_random_scalar<RandomGenerator, Kokkos::Experimental::half_t> test_half(
density_1d, density_3d, pool, num_draws);
deep_copy(density_1d, 0);
deep_copy(density_3d, 0);
cout << "Test Scalar=bhalf" << endl;
test_random_scalar<RandomGenerator, Kokkos::Experimental::bhalf_t> test_bhalf(
density_1d, density_3d, pool, num_draws);
deep_copy(density_1d, 0);
deep_copy(density_3d, 0);
cout << "Test Scalar=float" << endl;
test_random_scalar<RandomGenerator, float> test_float(density_1d, density_3d,
pool, num_draws);
deep_copy(density_1d, 0);
deep_copy(density_3d, 0);
cout << "Test Scalar=double" << endl;
test_random_scalar<RandomGenerator, double> test_double(
density_1d, density_3d, pool, num_draws);
}
template <class ExecutionSpace, class Pool>
struct TestDynRankView {
using ReducerType = Kokkos::MinMax<double, Kokkos::HostSpace>;
using ReducerValueType = typename ReducerType::value_type;
Kokkos::DynRankView<double, ExecutionSpace> A;
TestDynRankView(int n) : A("a", n) {}
KOKKOS_FUNCTION void operator()(int i, ReducerValueType& update) const {
if (A(i) < update.min_val) update.min_val = A(i);
if (A(i) > update.max_val) update.max_val = A(i);
}
void run() {
Pool random(13);
double min = 10.;
double max = 100.;
ExecutionSpace exec;
Kokkos::fill_random(exec, A, random, min, max);
ReducerValueType val;
Kokkos::parallel_reduce(
Kokkos::RangePolicy<ExecutionSpace>(exec, 0, A.size()), *this,
ReducerType(val));
exec.fence();
ASSERT_GE(val.min_val, min);
ASSERT_LE(val.max_val, max);
}
};
} // namespace AlgoRandomImpl
TEST(TEST_CATEGORY, Random_XorShift64) {
using ExecutionSpace = TEST_EXECSPACE;
#if defined(KOKKOS_ENABLE_SYCL) || defined(KOKKOS_ENABLE_CUDA) || \
defined(KOKKOS_ENABLE_HIP)
const int num_draws = 132141141;
#else // SERIAL, HPX, OPENMP
const int num_draws = 10240000;
#endif
AlgoRandomImpl::test_random<Kokkos::Random_XorShift64_Pool<ExecutionSpace>>(
num_draws);
AlgoRandomImpl::test_random<Kokkos::Random_XorShift64_Pool<
Kokkos::Device<ExecutionSpace, typename ExecutionSpace::memory_space>>>(
num_draws);
AlgoRandomImpl::TestDynRankView<
ExecutionSpace, Kokkos::Random_XorShift64_Pool<ExecutionSpace>>(10000)
.run();
}
TEST(TEST_CATEGORY, Random_XorShift1024_0) {
using ExecutionSpace = TEST_EXECSPACE;
#if defined(KOKKOS_ENABLE_SYCL) || defined(KOKKOS_ENABLE_CUDA) || \
defined(KOKKOS_ENABLE_HIP)
const int num_draws = 52428813;
#else // SERIAL, HPX, OPENMP
const int num_draws = 10130144;
#endif
AlgoRandomImpl::test_random<Kokkos::Random_XorShift1024_Pool<ExecutionSpace>>(
num_draws);
AlgoRandomImpl::test_random<Kokkos::Random_XorShift1024_Pool<
Kokkos::Device<ExecutionSpace, typename ExecutionSpace::memory_space>>>(
num_draws);
AlgoRandomImpl::TestDynRankView<
ExecutionSpace, Kokkos::Random_XorShift1024_Pool<ExecutionSpace>>(10000)
.run();
}
} // namespace Test
#endif