1809 lines
87 KiB
C++
1809 lines
87 KiB
C++
//@HEADER
|
|
// ************************************************************************
|
|
//
|
|
// Kokkos v. 4.0
|
|
// Copyright (2022) National Technology & Engineering
|
|
// Solutions of Sandia, LLC (NTESS).
|
|
//
|
|
// Under the terms of Contract DE-NA0003525 with NTESS,
|
|
// the U.S. Government retains certain rights in this software.
|
|
//
|
|
// Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://kokkos.org/LICENSE for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//@HEADER
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <Kokkos_Core.hpp>
|
|
#include <algorithm>
|
|
#include <initializer_list>
|
|
#include <type_traits>
|
|
|
|
#include <cfloat>
|
|
|
|
#if defined(KOKKOS_ENABLE_CUDA) || defined(KOKKOS_ENABLE_HIP) || \
|
|
defined(KOKKOS_ENABLE_SYCL) || defined(KOKKOS_ENABLE_OPENMPTARGET) || \
|
|
defined(KOKKOS_ENABLE_OPENACC)
|
|
#else
|
|
#define MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
#endif
|
|
|
|
#if defined KOKKOS_COMPILER_INTEL || \
|
|
(defined(KOKKOS_COMPILER_NVCC) && KOKKOS_COMPILER_NVCC >= 1130)
|
|
#define MATHEMATICAL_FUNCTIONS_TEST_UNREACHABLE __builtin_unreachable();
|
|
#else
|
|
#define MATHEMATICAL_FUNCTIONS_TEST_UNREACHABLE
|
|
#endif
|
|
|
|
namespace KE = Kokkos::Experimental;
|
|
|
|
// clang-format off
|
|
template <class>
|
|
struct math_unary_function_return_type;
|
|
// Floating-point types
|
|
#if defined(KOKKOS_HALF_T_IS_FLOAT) && !KOKKOS_HALF_T_IS_FLOAT
|
|
template <> struct math_unary_function_return_type<KE::half_t> { using type = KE::half_t; };
|
|
#endif // defined(KOKKOS_HALF_T_IS_FLOAT) && !KOKKOS_HALF_T_IS_FLOAT
|
|
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
|
|
template <> struct math_unary_function_return_type<KE::bhalf_t> { using type = KE::bhalf_t; };
|
|
#endif // defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
|
|
template <> struct math_unary_function_return_type< float> { using type = float; };
|
|
template <> struct math_unary_function_return_type< double> { using type = double; };
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
template <> struct math_unary_function_return_type<long double> { using type = long double; };
|
|
#endif
|
|
// Integral types
|
|
template <> struct math_unary_function_return_type< bool> { using type = double; };
|
|
template <> struct math_unary_function_return_type< short> { using type = double; };
|
|
template <> struct math_unary_function_return_type< unsigned short> { using type = double; };
|
|
template <> struct math_unary_function_return_type< int> { using type = double; };
|
|
template <> struct math_unary_function_return_type< unsigned int> { using type = double; };
|
|
template <> struct math_unary_function_return_type< long> { using type = double; };
|
|
template <> struct math_unary_function_return_type< unsigned long> { using type = double; };
|
|
template <> struct math_unary_function_return_type< long long> { using type = double; };
|
|
template <> struct math_unary_function_return_type<unsigned long long> { using type = double; };
|
|
template <class T>
|
|
using math_unary_function_return_type_t = typename math_unary_function_return_type<T>::type;
|
|
template <class, class>
|
|
struct math_binary_function_return_type;
|
|
#if defined(KOKKOS_HALF_T_IS_FLOAT) && !KOKKOS_HALF_T_IS_FLOAT
|
|
template <> struct math_binary_function_return_type<KE::half_t, KE::half_t> { using type = KE::half_t; };
|
|
template <> struct math_binary_function_return_type<short, KE::half_t> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned short, KE::half_t> { using type = double; };
|
|
template <> struct math_binary_function_return_type<int, KE::half_t> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned int, KE::half_t> { using type = double; };
|
|
template <> struct math_binary_function_return_type<long, KE::half_t> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long, KE::half_t> { using type = double; };
|
|
template <> struct math_binary_function_return_type<long long, KE::half_t> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long long, KE::half_t> { using type = double; };
|
|
#endif // defined(KOKKOS_HALF_T_IS_FLOAT) && !KOKKOS_HALF_T_IS_FLOAT
|
|
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
|
|
template <> struct math_binary_function_return_type<KE::bhalf_t, KE::bhalf_t> { using type = KE::bhalf_t; };
|
|
template <> struct math_binary_function_return_type<KE::half_t, KE::bhalf_t> { using type = KE::half_t; };
|
|
template <> struct math_binary_function_return_type<short, KE::bhalf_t> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned short, KE::bhalf_t> { using type = double; };
|
|
template <> struct math_binary_function_return_type<int, KE::bhalf_t> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned int, KE::bhalf_t> { using type = double; };
|
|
template <> struct math_binary_function_return_type<long, KE::bhalf_t> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long, KE::bhalf_t> { using type = double; };
|
|
template <> struct math_binary_function_return_type<long long, KE::bhalf_t> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long long, KE::bhalf_t> { using type = double; };
|
|
#endif // defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
|
|
template <> struct math_binary_function_return_type< float, float> { using type = float; };
|
|
template <> struct math_binary_function_return_type< float, double> { using type = double; };
|
|
template <> struct math_binary_function_return_type< float, bool> { using type = double; };
|
|
template <> struct math_binary_function_return_type< float, short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< float, int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< float, long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< float, long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< float, unsigned short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< float, unsigned int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< float, unsigned long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< float, unsigned long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< double, float> { using type = double; };
|
|
template <> struct math_binary_function_return_type< double, double> { using type = double; };
|
|
template <> struct math_binary_function_return_type< double, bool> { using type = double; };
|
|
template <> struct math_binary_function_return_type< double, short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< double, int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< double, long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< double, long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< double, unsigned short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< double, unsigned int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< double, unsigned long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< double, unsigned long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< short, float> { using type = double; };
|
|
template <> struct math_binary_function_return_type< short, double> { using type = double; };
|
|
template <> struct math_binary_function_return_type< short, bool> { using type = double; };
|
|
template <> struct math_binary_function_return_type< short, short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< short, int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< short, long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< short, long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< short, unsigned short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< short, unsigned int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< short, unsigned long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< short, unsigned long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< int, float> { using type = double; };
|
|
template <> struct math_binary_function_return_type< int, double> { using type = double; };
|
|
template <> struct math_binary_function_return_type< int, bool> { using type = double; };
|
|
template <> struct math_binary_function_return_type< int, short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< int, int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< int, long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< int, long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< int, unsigned short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< int, unsigned int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< int, unsigned long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< int, unsigned long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long, float> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long, double> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long, bool> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long, short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long, int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long, long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long, long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long, unsigned short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long, unsigned int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long, unsigned long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long, unsigned long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long long, float> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long long, double> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long long, bool> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long long, short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long long, int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long long, long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long long, long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long long, unsigned short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long long, unsigned int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long long, unsigned long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< long long, unsigned long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned short, float> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned short, double> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned short, bool> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned short, short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned short, int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned short, long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned short, long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned short, unsigned short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned short, unsigned int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned short, unsigned long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned short, unsigned long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned int, float> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned int, double> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned int, bool> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned int, short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned int, int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned int, long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned int, long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned int, unsigned short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned int, unsigned int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned int, unsigned long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned int, unsigned long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned long, float> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned long, double> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned long, bool> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned long, short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned long, int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned long, long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned long, long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned long, unsigned short> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned long, unsigned int> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned long, unsigned long> { using type = double; };
|
|
template <> struct math_binary_function_return_type< unsigned long, unsigned long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long long, float> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long long, double> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long long, bool> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long long, short> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long long, int> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long long, long> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long long, long long> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long long, unsigned short> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long long, unsigned int> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long long, unsigned long> { using type = double; };
|
|
template <> struct math_binary_function_return_type<unsigned long long, unsigned long long> { using type = double; };
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
template <> struct math_binary_function_return_type< float, long double> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< double, long double> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< long double, float> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< long double, double> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< long double, long double> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< long double, bool> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< long double, short> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< long double, int> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< long double, long> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< long double, long long> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< long double, unsigned short> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< long double, unsigned int> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< long double, unsigned long> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< long double, unsigned long long> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< short, long double> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< int, long double> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< long, long double> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< long long, long double> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< unsigned short, long double> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< unsigned int, long double> { using type = long double; };
|
|
template <> struct math_binary_function_return_type< unsigned long, long double> { using type = long double; };
|
|
template <> struct math_binary_function_return_type<unsigned long long, long double> { using type = long double; };
|
|
#endif
|
|
template <class T, class U>
|
|
using math_binary_function_return_type_t = typename math_binary_function_return_type<T, U>::type;
|
|
// clang-format on
|
|
template <class T, class U, class V>
|
|
using math_ternary_function_return_type_t = math_binary_function_return_type_t<
|
|
T, math_binary_function_return_type_t<U, V>>;
|
|
|
|
struct FloatingPointComparison {
|
|
private:
|
|
template <class T>
|
|
KOKKOS_FUNCTION double eps(T) const {
|
|
return DBL_EPSILON;
|
|
}
|
|
#if defined(KOKKOS_HALF_T_IS_FLOAT) && !KOKKOS_HALF_T_IS_FLOAT
|
|
KOKKOS_FUNCTION
|
|
KE::half_t eps(KE::half_t) const {
|
|
// FIXME_NVHPC compile-time error
|
|
#ifdef KOKKOS_COMPILER_NVHPC
|
|
return 0.0009765625F;
|
|
#else
|
|
return KE::epsilon<KE::half_t>::value;
|
|
#endif
|
|
}
|
|
#endif
|
|
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
|
|
KOKKOS_FUNCTION
|
|
KE::bhalf_t eps(KE::bhalf_t) const {
|
|
// FIXME_NVHPC compile-time error
|
|
#ifdef KOKKOS_COMPILER_NVHPC
|
|
return 0.0078125;
|
|
#else
|
|
return KE::epsilon<KE::bhalf_t>::value;
|
|
#endif
|
|
}
|
|
#endif
|
|
KOKKOS_FUNCTION
|
|
double eps(float) const { return FLT_EPSILON; }
|
|
// POWER9 gives unexpected values with LDBL_EPSILON issues
|
|
// https://stackoverflow.com/questions/68960416/ppc64-long-doubles-machine-epsilon-calculation
|
|
#if defined(KOKKOS_ARCH_POWER9) || defined(KOKKOS_ARCH_POWER8)
|
|
KOKKOS_FUNCTION
|
|
double eps(long double) const { return DBL_EPSILON; }
|
|
#else
|
|
KOKKOS_FUNCTION
|
|
double eps(long double) const { return LDBL_EPSILON; }
|
|
#endif
|
|
// Using absolute here instead of abs, since we actually test abs ...
|
|
template <class T>
|
|
KOKKOS_FUNCTION std::enable_if_t<std::is_signed<T>::value, T> absolute(
|
|
T val) const {
|
|
return val < T(0) ? -val : val;
|
|
}
|
|
|
|
template <class T>
|
|
KOKKOS_FUNCTION std::enable_if_t<!std::is_signed<T>::value, T> absolute(
|
|
T val) const {
|
|
return val;
|
|
}
|
|
|
|
public:
|
|
template <class FPT>
|
|
KOKKOS_FUNCTION bool compare_near_zero(FPT const& fpv, double ulp) const {
|
|
auto abs_tol = eps(fpv) * ulp;
|
|
|
|
bool ar = absolute(fpv) < abs_tol;
|
|
if (!ar) {
|
|
Kokkos::printf("absolute value exceeds tolerance [|%e| > %e]\n",
|
|
(double)fpv, abs_tol);
|
|
}
|
|
|
|
return ar;
|
|
}
|
|
|
|
template <class Lhs, class Rhs>
|
|
KOKKOS_FUNCTION bool compare(Lhs const& lhs, Rhs const& rhs,
|
|
double ulp) const {
|
|
if (lhs == 0) {
|
|
return compare_near_zero(rhs, ulp);
|
|
} else if (rhs == 0) {
|
|
return compare_near_zero(lhs, ulp);
|
|
} else {
|
|
auto rel_tol = (eps(lhs) < eps(rhs) ? eps(lhs) : eps(rhs)) * ulp;
|
|
double abs_diff = static_cast<double>(rhs > lhs ? rhs - lhs : lhs - rhs);
|
|
double min_denom = static_cast<double>(
|
|
absolute(rhs) < absolute(lhs) ? absolute(rhs) : absolute(lhs));
|
|
double rel_diff = abs_diff / min_denom;
|
|
bool ar = abs_diff == 0 || rel_diff < rel_tol;
|
|
if (!ar) {
|
|
Kokkos::printf("relative difference exceeds tolerance [%e > %e]\n",
|
|
(double)rel_diff, rel_tol);
|
|
}
|
|
|
|
return ar;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <class>
|
|
struct math_function_name;
|
|
|
|
#define DEFINE_UNARY_FUNCTION_EVAL(FUNC, ULP_FACTOR) \
|
|
struct MathUnaryFunction_##FUNC { \
|
|
template <typename T> \
|
|
static KOKKOS_FUNCTION auto eval(T x) { \
|
|
static_assert( \
|
|
std::is_same<decltype(Kokkos::FUNC((T)0)), \
|
|
math_unary_function_return_type_t<T>>::value); \
|
|
return Kokkos::FUNC(x); \
|
|
} \
|
|
template <typename T> \
|
|
static auto eval_std(T x) { \
|
|
if constexpr (std::is_same<T, KE::half_t>::value || \
|
|
std::is_same<T, KE::bhalf_t>::value) { \
|
|
return std::FUNC(static_cast<float>(x)); \
|
|
} else { \
|
|
static_assert( \
|
|
std::is_same<decltype(std::FUNC((T)0)), \
|
|
math_unary_function_return_type_t<T>>::value); \
|
|
return std::FUNC(x); \
|
|
} \
|
|
MATHEMATICAL_FUNCTIONS_TEST_UNREACHABLE \
|
|
} \
|
|
static KOKKOS_FUNCTION double ulp_factor() { return ULP_FACTOR; } \
|
|
}; \
|
|
using kk_##FUNC = MathUnaryFunction_##FUNC; \
|
|
template <> \
|
|
struct math_function_name<MathUnaryFunction_##FUNC> { \
|
|
static constexpr char name[] = #FUNC; \
|
|
}; \
|
|
constexpr char math_function_name<MathUnaryFunction_##FUNC>::name[]
|
|
|
|
#define DEFINE_UNARY_FUNCTION_EVAL_CUSTOM(FUNC, ULP_FACTOR, REF_FUNC) \
|
|
struct MathUnaryFunction_##FUNC { \
|
|
template <typename T> \
|
|
static KOKKOS_FUNCTION auto eval(T x) { \
|
|
static_assert( \
|
|
std::is_same<decltype(Kokkos::FUNC((T)0)), \
|
|
math_unary_function_return_type_t<T>>::value); \
|
|
return Kokkos::FUNC(x); \
|
|
} \
|
|
template <typename T> \
|
|
static auto eval_std(T x) { \
|
|
static_assert( \
|
|
std::is_same<decltype(REF_FUNC), \
|
|
math_unary_function_return_type_t<T>>::value); \
|
|
return REF_FUNC; \
|
|
} \
|
|
static KOKKOS_FUNCTION double ulp_factor() { return ULP_FACTOR; } \
|
|
}; \
|
|
using kk_##FUNC = MathUnaryFunction_##FUNC; \
|
|
template <> \
|
|
struct math_function_name<MathUnaryFunction_##FUNC> { \
|
|
static constexpr char name[] = #FUNC; \
|
|
}; \
|
|
constexpr char math_function_name<MathUnaryFunction_##FUNC>::name[]
|
|
|
|
#ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_3
|
|
// Generally the expected ULP error should come from here:
|
|
// https://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.html
|
|
// For now 1s largely seem to work ...
|
|
DEFINE_UNARY_FUNCTION_EVAL(exp, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(exp2, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(expm1, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(log, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(log10, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(log2, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(log1p, 2);
|
|
#endif
|
|
|
|
#ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_1
|
|
DEFINE_UNARY_FUNCTION_EVAL(sqrt, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(cbrt, 2);
|
|
|
|
DEFINE_UNARY_FUNCTION_EVAL(sin, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(cos, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(tan, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(asin, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(acos, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(atan, 2);
|
|
|
|
DEFINE_UNARY_FUNCTION_EVAL(sinh, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(cosh, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(tanh, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(asinh, 4);
|
|
DEFINE_UNARY_FUNCTION_EVAL(acosh, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(atanh, 2);
|
|
|
|
// non-standard math functions
|
|
DEFINE_UNARY_FUNCTION_EVAL_CUSTOM(rsqrt, 2,
|
|
decltype(std::sqrt(x))(1) / std::sqrt(x));
|
|
#endif
|
|
|
|
#ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_2
|
|
#if defined(__APPLE__)
|
|
// Apple's standard library implementation seems to have a poor implementation
|
|
DEFINE_UNARY_FUNCTION_EVAL(erf, 5);
|
|
#else
|
|
DEFINE_UNARY_FUNCTION_EVAL(erf, 2);
|
|
#endif
|
|
|
|
DEFINE_UNARY_FUNCTION_EVAL(erfc, 5);
|
|
// has a larger error due to some impls doing integer exact.
|
|
// We cast always to double leading to larger difference when comparing our
|
|
// tgamma to std::tgamma on the host.
|
|
DEFINE_UNARY_FUNCTION_EVAL(tgamma, 200);
|
|
DEFINE_UNARY_FUNCTION_EVAL(lgamma, 2);
|
|
|
|
DEFINE_UNARY_FUNCTION_EVAL(ceil, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(floor, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(trunc, 2);
|
|
DEFINE_UNARY_FUNCTION_EVAL(round, 1);
|
|
#ifndef KOKKOS_ENABLE_SYCL
|
|
DEFINE_UNARY_FUNCTION_EVAL(nearbyint, 2);
|
|
#endif
|
|
|
|
DEFINE_UNARY_FUNCTION_EVAL(logb, 2);
|
|
#endif
|
|
|
|
#undef DEFINE_UNARY_FUNCTION_EVAL
|
|
|
|
#define DEFINE_BINARY_FUNCTION_EVAL(FUNC, ULP_FACTOR) \
|
|
struct MathBinaryFunction_##FUNC { \
|
|
template <typename T, typename U> \
|
|
static KOKKOS_FUNCTION auto eval(T x, U y) { \
|
|
static_assert( \
|
|
std::is_same<decltype(Kokkos::FUNC((T)0, (U)0)), \
|
|
math_binary_function_return_type_t<T, U>>::value); \
|
|
return Kokkos::FUNC(x, y); \
|
|
} \
|
|
template <typename T, typename U> \
|
|
static auto eval_std(T x, U y) { \
|
|
constexpr bool const x_is_half = \
|
|
(KE::Impl::is_float16<T>::value || KE::Impl::is_bfloat16<T>::value); \
|
|
constexpr bool const y_is_half = \
|
|
(KE::Impl::is_float16<U>::value || KE::Impl::is_bfloat16<U>::value); \
|
|
if constexpr (x_is_half && y_is_half) \
|
|
return std::FUNC(static_cast<float>(x), static_cast<float>(y)); \
|
|
else if constexpr (x_is_half) \
|
|
return std::FUNC(static_cast<float>(x), y); \
|
|
else if constexpr (y_is_half) \
|
|
return std::FUNC(x, static_cast<float>(y)); \
|
|
else { \
|
|
static_assert( \
|
|
std::is_same<decltype(std::FUNC((T)0, (U)0)), \
|
|
math_binary_function_return_type_t<T, U>>::value); \
|
|
return std::FUNC(x, y); \
|
|
} \
|
|
MATHEMATICAL_FUNCTIONS_TEST_UNREACHABLE \
|
|
} \
|
|
static KOKKOS_FUNCTION double ulp_factor() { return ULP_FACTOR; } \
|
|
}; \
|
|
using kk_##FUNC = MathBinaryFunction_##FUNC; \
|
|
template <> \
|
|
struct math_function_name<MathBinaryFunction_##FUNC> { \
|
|
static constexpr char name[] = #FUNC; \
|
|
}; \
|
|
constexpr char math_function_name<MathBinaryFunction_##FUNC>::name[]
|
|
|
|
#ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_1
|
|
DEFINE_BINARY_FUNCTION_EVAL(pow, 2);
|
|
DEFINE_BINARY_FUNCTION_EVAL(hypot, 2);
|
|
#endif
|
|
#ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_2
|
|
DEFINE_BINARY_FUNCTION_EVAL(nextafter, 1);
|
|
DEFINE_BINARY_FUNCTION_EVAL(copysign, 1);
|
|
#endif
|
|
|
|
#undef DEFINE_BINARY_FUNCTION_EVAL
|
|
|
|
#define DEFINE_TERNARY_FUNCTION_EVAL(FUNC, ULP_FACTOR) \
|
|
struct MathTernaryFunction_##FUNC { \
|
|
template <typename T, typename U, typename V> \
|
|
static KOKKOS_FUNCTION auto eval(T x, U y, V z) { \
|
|
static_assert( \
|
|
std::is_same<decltype(Kokkos::FUNC((T)0, (U)0, (V)0)), \
|
|
math_ternary_function_return_type_t<T, U, V>>::value); \
|
|
return Kokkos::FUNC(x, y, z); \
|
|
} \
|
|
template <typename T, typename U, typename V> \
|
|
static auto eval_std(T x, U y, V z) { \
|
|
static_assert( \
|
|
std::is_same<decltype(std::FUNC((T)0, (U)0, (V)0)), \
|
|
math_ternary_function_return_type_t<T, U, V>>::value); \
|
|
return std::FUNC(x, y, z); \
|
|
} \
|
|
static KOKKOS_FUNCTION double ulp_factor() { return ULP_FACTOR; } \
|
|
}; \
|
|
using kk3_##FUNC = MathTernaryFunction_##FUNC; \
|
|
template <> \
|
|
struct math_function_name<MathTernaryFunction_##FUNC> { \
|
|
static constexpr char name[] = #FUNC; \
|
|
}; \
|
|
constexpr char math_function_name<MathTernaryFunction_##FUNC>::name[]
|
|
|
|
#ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_1
|
|
DEFINE_TERNARY_FUNCTION_EVAL(hypot, 2);
|
|
DEFINE_TERNARY_FUNCTION_EVAL(fma, 2);
|
|
#endif
|
|
|
|
#undef DEFINE_TERNARY_FUNCTION_EVAL
|
|
|
|
// clang-format off
|
|
template <class>
|
|
struct type_helper;
|
|
#define DEFINE_TYPE_NAME(T) \
|
|
template <> struct type_helper<T> { static char const * name() { return #T; } };
|
|
DEFINE_TYPE_NAME(bool)
|
|
DEFINE_TYPE_NAME(int)
|
|
DEFINE_TYPE_NAME(long)
|
|
DEFINE_TYPE_NAME(long long)
|
|
DEFINE_TYPE_NAME(unsigned int)
|
|
DEFINE_TYPE_NAME(unsigned long)
|
|
DEFINE_TYPE_NAME(unsigned long long)
|
|
#if defined(KOKKOS_HALF_T_IS_FLOAT) && !KOKKOS_HALF_T_IS_FLOAT
|
|
DEFINE_TYPE_NAME(KE::half_t)
|
|
#endif
|
|
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
|
|
DEFINE_TYPE_NAME(KE::bhalf_t)
|
|
#endif
|
|
DEFINE_TYPE_NAME(float)
|
|
DEFINE_TYPE_NAME(double)
|
|
DEFINE_TYPE_NAME(long double)
|
|
#undef DEFINE_TYPE_NAME
|
|
// clang-format on
|
|
|
|
template <class Space, class Func, class Arg, std::size_t N,
|
|
class Ret = math_unary_function_return_type_t<Arg>>
|
|
struct TestMathUnaryFunction : FloatingPointComparison {
|
|
Arg val_[N];
|
|
Ret res_[N];
|
|
TestMathUnaryFunction(const Arg (&val)[N]) {
|
|
std::copy(val, val + N, val_);
|
|
std::transform(val, val + N, res_,
|
|
[](auto x) { return Func::eval_std(x); });
|
|
run();
|
|
}
|
|
void run() {
|
|
int errors = 0;
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<Space>(0, N), *this, errors);
|
|
ASSERT_EQ(errors, 0) << "Failed check no error for "
|
|
<< math_function_name<Func>::name << "("
|
|
<< type_helper<Arg>::name() << ")";
|
|
}
|
|
KOKKOS_FUNCTION void operator()(int i, int& e) const {
|
|
bool ar = compare(Func::eval(val_[i]), res_[i], Func::ulp_factor());
|
|
if (!ar) {
|
|
++e;
|
|
Kokkos::printf("value at %f which is %f was expected to be %f\n",
|
|
(double)val_[i], (double)Func::eval(val_[i]),
|
|
(double)res_[i]);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <class Space, class... Func, class Arg, std::size_t N>
|
|
void do_test_math_unary_function(const Arg (&x)[N]) {
|
|
(void)std::initializer_list<int>{
|
|
(TestMathUnaryFunction<Space, Func, Arg, N>(x), 0)...};
|
|
|
|
// test if potentially device specific math functions also work on host
|
|
if constexpr (!std::is_same_v<Space, Kokkos::DefaultHostExecutionSpace>)
|
|
(void)std::initializer_list<int>{
|
|
(TestMathUnaryFunction<Kokkos::DefaultHostExecutionSpace, Func, Arg, N>(
|
|
x),
|
|
0)...};
|
|
}
|
|
|
|
#define TEST_MATH_FUNCTION(FUNC) \
|
|
do_test_math_unary_function<TEST_EXECSPACE, MathUnaryFunction_##FUNC>
|
|
|
|
template <class Half, class Space, class... Func, class Arg, std::size_t N>
|
|
void do_test_half_math_unary_function(const Arg (&x)[N]) {
|
|
Half y[N];
|
|
std::copy(x, x + N, y); // cast to array of half type
|
|
(void)std::initializer_list<int>{
|
|
(TestMathUnaryFunction<Space, Func, Half, N>(y), 0)...};
|
|
|
|
// test if potentially device specific math functions also work on host
|
|
if constexpr (!std::is_same_v<Space, Kokkos::DefaultHostExecutionSpace>)
|
|
(void)std::initializer_list<int>{(
|
|
TestMathUnaryFunction<Kokkos::DefaultHostExecutionSpace, Func, Half, N>(
|
|
y),
|
|
0)...};
|
|
}
|
|
|
|
#define TEST_HALF_MATH_FUNCTION(FUNC, T) \
|
|
do_test_half_math_unary_function<T, TEST_EXECSPACE, MathUnaryFunction_##FUNC>
|
|
|
|
template <class Space, class Func, class Arg1, class Arg2,
|
|
class Ret = math_binary_function_return_type_t<Arg1, Arg2>>
|
|
struct TestMathBinaryFunction : FloatingPointComparison {
|
|
Arg1 val1_;
|
|
Arg2 val2_;
|
|
Ret res_;
|
|
TestMathBinaryFunction(Arg1 val1, Arg2 val2)
|
|
: val1_(val1), val2_(val2), res_(Func::eval_std(val1, val2)) {
|
|
run();
|
|
}
|
|
void run() {
|
|
int errors = 0;
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<Space>(0, 1), *this, errors);
|
|
ASSERT_EQ(errors, 0) << "Failed check no error for "
|
|
<< math_function_name<Func>::name << "("
|
|
<< type_helper<Arg1>::name() << ", "
|
|
<< type_helper<Arg2>::name() << ")";
|
|
}
|
|
KOKKOS_FUNCTION void operator()(int, int& e) const {
|
|
bool ar = compare(Func::eval(val1_, val2_), res_, Func::ulp_factor());
|
|
if (!ar) {
|
|
++e;
|
|
Kokkos::printf("value at %f, %f which is %f was expected to be %f\n",
|
|
(double)val1_, (double)val2_,
|
|
(double)Func::eval(val1_, val2_), (double)res_);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <class Space, class... Func, class Arg1, class Arg2>
|
|
void do_test_math_binary_function(Arg1 arg1, Arg2 arg2) {
|
|
(void)std::initializer_list<int>{
|
|
(TestMathBinaryFunction<Space, Func, Arg1, Arg2>(arg1, arg2), 0)...};
|
|
}
|
|
|
|
template <class Space, class Func, class Arg1, class Arg2, class Arg3,
|
|
class Ret = math_ternary_function_return_type_t<Arg1, Arg2, Arg3>>
|
|
struct TestMathTernaryFunction : FloatingPointComparison {
|
|
Arg1 val1_;
|
|
Arg2 val2_;
|
|
Arg3 val3_;
|
|
Ret res_;
|
|
TestMathTernaryFunction(Arg1 val1, Arg2 val2, Arg3 val3)
|
|
: val1_(val1),
|
|
val2_(val2),
|
|
val3_(val3),
|
|
res_(Func::eval_std(val1, val2, val3)) {
|
|
run();
|
|
}
|
|
void run() {
|
|
int errors = 0;
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<Space>(0, 1), *this, errors);
|
|
ASSERT_EQ(errors, 0) << "Failed check no error for "
|
|
<< math_function_name<Func>::name << "("
|
|
<< type_helper<Arg1>::name() << ", "
|
|
<< type_helper<Arg1>::name() << ", "
|
|
<< type_helper<Arg3>::name() << ")";
|
|
}
|
|
KOKKOS_FUNCTION void operator()(int, int& e) const {
|
|
bool ar =
|
|
compare(Func::eval(val1_, val2_, val3_), res_, Func::ulp_factor());
|
|
if (!ar) {
|
|
++e;
|
|
Kokkos::printf("value at %f, %f, %f which is %f was expected to be %f\n",
|
|
(double)val1_, (double)val2_, (double)val3_,
|
|
(double)Func::eval(val1_, val2_, val3_), (double)res_);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <class Space, class... Func, class Arg1, class Arg2, class Arg3>
|
|
void do_test_math_ternary_function(Arg1 arg1, Arg2 arg2, Arg3 arg3) {
|
|
(void)std::initializer_list<int>{
|
|
(TestMathTernaryFunction<Space, Func, Arg1, Arg2, Arg3>(arg1, arg2, arg3),
|
|
0)...};
|
|
}
|
|
|
|
#ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_1
|
|
|
|
TEST(TEST_CATEGORY, mathematical_functions_trigonometric_functions) {
|
|
TEST_MATH_FUNCTION(sin)({true, false});
|
|
TEST_MATH_FUNCTION(sin)({-3, -2, -1, 0, 1});
|
|
TEST_MATH_FUNCTION(sin)({-3l, -2l, -1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(sin)({-3ll, -2ll, -1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(sin)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(sin)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(sin)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(sin, KE::half_t)({.1f, .2f, .3f});
|
|
TEST_HALF_MATH_FUNCTION(sin, KE::bhalf_t)({.1f, .2f, .3f});
|
|
TEST_MATH_FUNCTION(sin)({.1f, .2f, .3f});
|
|
TEST_MATH_FUNCTION(sin)({.4, .5, .6});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(sin)({.7l, .8l, .9l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(cos)({true, false});
|
|
TEST_MATH_FUNCTION(cos)({-3, -2, -1, 0, 1});
|
|
TEST_MATH_FUNCTION(cos)({-3l, -2l, -1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(cos)({-3ll, -2ll, -1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(cos)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(cos)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(cos)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(cos, KE::half_t)({.1f, .2f, .3f});
|
|
TEST_HALF_MATH_FUNCTION(cos, KE::bhalf_t)({.1f, .2f, .3f});
|
|
TEST_MATH_FUNCTION(cos)({.1f, .2f, .3f});
|
|
TEST_MATH_FUNCTION(cos)({.4, .5, .6});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(cos)({.7l, .8l, .9l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(tan)({true, false});
|
|
TEST_MATH_FUNCTION(tan)({-3, -2, -1, 0, 1});
|
|
TEST_MATH_FUNCTION(tan)({-3l, -2l, -1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(tan)({-3ll, -2ll, -1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(tan)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(tan)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(tan)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(tan, KE::half_t)({.1f, .2f, .3f});
|
|
TEST_HALF_MATH_FUNCTION(tan, KE::bhalf_t)({.1f, .2f, .3f});
|
|
TEST_MATH_FUNCTION(tan)({.1f, .2f, .3f});
|
|
TEST_MATH_FUNCTION(tan)({.4, .5, .6});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(tan)({.7l, .8l, .9l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(asin)({true, false});
|
|
TEST_MATH_FUNCTION(asin)({-1, 0, 1});
|
|
TEST_MATH_FUNCTION(asin)({-1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(asin)({-1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(asin)({0u, 1u});
|
|
TEST_MATH_FUNCTION(asin)({0ul, 1ul});
|
|
TEST_MATH_FUNCTION(asin)({0ull, 1ull});
|
|
TEST_HALF_MATH_FUNCTION(asin, KE::half_t)({-1.f, .9f, -.8f, .7f, -.6f});
|
|
TEST_HALF_MATH_FUNCTION(asin, KE::bhalf_t)({-1.f, .9f, -.8f, .7f, -.6f});
|
|
TEST_MATH_FUNCTION(asin)({-1.f, .9f, -.8f, .7f, -.6f});
|
|
TEST_MATH_FUNCTION(asin)({-.5, .4, -.3, .2, -.1, 0.});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(asin)({-.5l, .3l, 0.l, .2l, .4l, .6l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(acos)({true, false});
|
|
TEST_MATH_FUNCTION(acos)({-1, 0, 1});
|
|
TEST_MATH_FUNCTION(acos)({-1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(acos)({-1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(acos)({0u, 1u});
|
|
TEST_MATH_FUNCTION(acos)({0ul, 1ul});
|
|
TEST_MATH_FUNCTION(acos)({0ull, 1ull});
|
|
TEST_HALF_MATH_FUNCTION(acos, KE::half_t)({-1.f, .9f, -.8f, .7f, -.6f});
|
|
TEST_HALF_MATH_FUNCTION(acos, KE::bhalf_t)({-1.f, .9f, -.8f, .7f, -.6f});
|
|
TEST_MATH_FUNCTION(acos)({-1.f, .9f, -.8f, .7f, -.6f});
|
|
TEST_MATH_FUNCTION(acos)({-.5, .4, -.3, .2, -.1, 0.});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(acos)({-.5l, .3l, 0.l, .2l, .4l, .6l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(atan)({true, false});
|
|
TEST_MATH_FUNCTION(atan)({-1, 0, 1});
|
|
TEST_MATH_FUNCTION(atan)({-1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(atan)({-1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(atan)({0u, 1u});
|
|
TEST_MATH_FUNCTION(atan)({0ul, 1ul});
|
|
TEST_MATH_FUNCTION(atan)({0ull, 1ull});
|
|
TEST_HALF_MATH_FUNCTION(atan, KE::half_t)
|
|
({-1.5f, 1.3f, -1.1f, .9f, -.7f, .5f});
|
|
TEST_HALF_MATH_FUNCTION(atan, KE::bhalf_t)
|
|
({-1.5f, 1.3f, -1.1f, .9f, -.7f, .5f});
|
|
TEST_MATH_FUNCTION(atan)({-1.5f, 1.3f, -1.1f, .9f, -.7f, .5f});
|
|
TEST_MATH_FUNCTION(atan)({1.4, -1.2, 1., -.8, .6, -.4, .2, -0.});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(atan)({-.98l, .67l, -54.l, .34l, -.21l});
|
|
#endif
|
|
|
|
// TODO atan2
|
|
}
|
|
|
|
TEST(TEST_CATEGORY, mathematical_functions_power_functions) {
|
|
TEST_MATH_FUNCTION(sqrt)({0, 1, 2, 3, 5, 7, 11});
|
|
TEST_MATH_FUNCTION(sqrt)({0l, 1l, 2l, 3l, 5l, 7l, 11l});
|
|
TEST_MATH_FUNCTION(sqrt)({0ll, 1ll, 2ll, 3ll, 5ll, 7ll, 11ll});
|
|
TEST_MATH_FUNCTION(sqrt)({0u, 1u, 2u, 3u, 5u, 7u});
|
|
TEST_MATH_FUNCTION(sqrt)({0ul, 1ul, 2ul, 3ul, 5ul, 7ul});
|
|
TEST_MATH_FUNCTION(sqrt)({0ull, 1ull, 2ull, 3ull, 5ull, 7ull});
|
|
TEST_HALF_MATH_FUNCTION(sqrt, KE::half_t)({10.f, 20.f, 30.f, 40.f});
|
|
TEST_HALF_MATH_FUNCTION(sqrt, KE::bhalf_t)({10.f, 20.f, 30.f, 40.f});
|
|
TEST_MATH_FUNCTION(sqrt)({10.f, 20.f, 30.f, 40.f});
|
|
TEST_MATH_FUNCTION(sqrt)({11.1, 22.2, 33.3, 44.4});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(sqrt)({10.l, 20.l, 30.l, 40.l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(cbrt)({-5, -3, -1, 2, 4, 6});
|
|
TEST_MATH_FUNCTION(cbrt)({-5l, -3l, -1l, 2l, 4l, 6l});
|
|
TEST_MATH_FUNCTION(cbrt)({-5ll, -3ll, -1ll, 2ll, 4ll, 6ll});
|
|
TEST_MATH_FUNCTION(cbrt)({0u, 1u, 2u, 3u, 4u, 5u});
|
|
TEST_MATH_FUNCTION(cbrt)({0ul, 1ul, 2ul, 3ul, 4ul, 5ul});
|
|
TEST_MATH_FUNCTION(cbrt)({0ull, 1ull, 2ull, 3ull, 4ull, 5ull});
|
|
TEST_HALF_MATH_FUNCTION(cbrt, KE::half_t)({-1.f, .2f, -3.f, .4f, -5.f});
|
|
TEST_HALF_MATH_FUNCTION(cbrt, KE::bhalf_t)({-1.f, .2f, -3.f, .4f, -5.f});
|
|
TEST_MATH_FUNCTION(cbrt)({-1.f, .2f, -3.f, .4f, -5.f});
|
|
TEST_MATH_FUNCTION(cbrt)({11.1, -2.2, 33.3, -4.4, 55.5});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(cbrt)({-10.l, 20.l, -30.l, 40.l, -50.l});
|
|
#endif
|
|
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_pow>(
|
|
static_cast<KE::half_t>(2.f), static_cast<KE::half_t>(3.f));
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_pow>(
|
|
static_cast<KE::bhalf_t>(2.f), static_cast<KE::bhalf_t>(3.f));
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_pow>(2.f, 3.f);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_pow>(2.f, 3.f);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_pow>(2., 3.);
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_pow>(2.l, 3.l);
|
|
#endif
|
|
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_hypot>(
|
|
static_cast<KE::half_t>(2.f), static_cast<KE::half_t>(3.f));
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_hypot>(
|
|
static_cast<KE::bhalf_t>(2.f), static_cast<KE::bhalf_t>(3.f));
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_hypot>(2.f, 3.f);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_hypot>(2., 3.);
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
// FIXME: fails with gcc on Power platforms
|
|
#if !(defined(KOKKOS_ARCH_POWER8) || defined(KOKKOS_ARCH_POWER9))
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_hypot>(2.l, 3.l);
|
|
#endif
|
|
#endif
|
|
|
|
do_test_math_ternary_function<TEST_EXECSPACE, kk3_hypot>(2.f, 3.f, 4.f);
|
|
do_test_math_ternary_function<TEST_EXECSPACE, kk3_hypot>(2., 3., 4.);
|
|
do_test_math_ternary_function<TEST_EXECSPACE, kk3_hypot>(2, 3.f, 4.);
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
#if !(defined(KOKKOS_ARCH_POWER8) || defined(KOKKOS_ARCH_POWER9))
|
|
do_test_math_ternary_function<TEST_EXECSPACE, kk3_hypot>(2.l, 3.l, 4.l);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
TEST(TEST_CATEGORY, mathematical_functions_fma) {
|
|
do_test_math_ternary_function<TEST_EXECSPACE, kk3_fma>(2.f, 3.f, 4.f);
|
|
do_test_math_ternary_function<TEST_EXECSPACE, kk3_fma>(2., 3., 4.);
|
|
do_test_math_ternary_function<TEST_EXECSPACE, kk3_fma>(2, 3.f, 4.);
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
do_test_math_ternary_function<TEST_EXECSPACE, kk3_fma>(2.l, 3.l, 4.l);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_3
|
|
TEST(TEST_CATEGORY, mathematical_functions_exponential_functions) {
|
|
TEST_MATH_FUNCTION(exp)({-9, -8, -7, -6, -5, 4, 3, 2, 1, 0});
|
|
TEST_MATH_FUNCTION(exp)({-9l, -8l, -7l, -6l, -5l, 4l, 3l, 2l, 1l, 0l});
|
|
TEST_MATH_FUNCTION(exp)({-9ll, -8ll, -7ll, -6ll, -5ll, 4ll, 3ll, 2ll, 1ll});
|
|
TEST_MATH_FUNCTION(exp)({0u, 1u, 2u, 3u, 4u, 5u});
|
|
TEST_MATH_FUNCTION(exp)({0ul, 1ul, 2ul, 3ul, 4ul, 5ul});
|
|
TEST_MATH_FUNCTION(exp)({0ull, 1ull, 2ull, 3ull, 4ull, 5ull});
|
|
TEST_HALF_MATH_FUNCTION(exp, KE::half_t)
|
|
({-98.f, -7.6f, -.54f, 3.2f, 1.f, -0.f});
|
|
TEST_HALF_MATH_FUNCTION(exp, KE::bhalf_t)
|
|
({-98.f, -7.6f, -.54f, 3.2f, 1.f, -0.f});
|
|
TEST_MATH_FUNCTION(exp)({-98.f, -7.6f, -.54f, 3.2f, 1.f, -0.f});
|
|
TEST_MATH_FUNCTION(exp)({-98., -7.6, -.54, 3.2, 1., -0.});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(exp)({-98.l, -7.6l, -.54l, 3.2l, 1.l, -0.l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(exp2)({-9, -8, -7, -6, -5, 4, 3, 2, 1, 0});
|
|
TEST_MATH_FUNCTION(exp2)({-9l, -8l, -7l, -6l, -5l, 4l, 3l, 2l, 1l, 0l});
|
|
TEST_MATH_FUNCTION(exp2)({-9ll, -8ll, -7ll, -6ll, -5ll, 4ll, 3ll, 2ll, 1ll});
|
|
TEST_MATH_FUNCTION(exp2)({0u, 1u, 2u, 3u, 4u, 5u});
|
|
TEST_MATH_FUNCTION(exp2)({0ul, 1ul, 2ul, 3ul, 4ul, 5ul});
|
|
TEST_MATH_FUNCTION(exp2)({0ull, 1ull, 2ull, 3ull, 4ull, 5ull});
|
|
TEST_HALF_MATH_FUNCTION(exp2, KE::half_t)
|
|
({-98.f, -7.6f, -.54f, 3.2f, 1.f, -0.f});
|
|
TEST_HALF_MATH_FUNCTION(exp2, KE::bhalf_t)
|
|
({-98.f, -7.6f, -.54f, 3.2f, 1.f, -0.f});
|
|
TEST_MATH_FUNCTION(exp2)({-98.f, -7.6f, -.54f, 3.2f, 1.f, -0.f});
|
|
TEST_MATH_FUNCTION(exp2)({-98., -7.6, -.54, 3.2, 1., -0.});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(exp2)({-98.l, -7.6l, -.54l, 3.2l, 1.l, -0.l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(expm1)({-9, -8, -7, -6, -5, 4, 3, 2, 1, 0});
|
|
TEST_MATH_FUNCTION(expm1)({-9l, -8l, -7l, -6l, -5l, 4l, 3l, 2l, 1l, 0l});
|
|
TEST_MATH_FUNCTION(expm1)({-9ll, -8ll, -7ll, -6ll, -5ll, 4ll, 3ll, 2ll, 1ll});
|
|
TEST_MATH_FUNCTION(expm1)({0u, 1u, 2u, 3u, 4u, 5u});
|
|
TEST_MATH_FUNCTION(expm1)({0ul, 1ul, 2ul, 3ul, 4ul, 5ul});
|
|
TEST_MATH_FUNCTION(expm1)({0ull, 1ull, 2ull, 3ull, 4ull, 5ull});
|
|
TEST_HALF_MATH_FUNCTION(expm1, KE::half_t)
|
|
({-98.f, -7.6f, -.54f, 3.2f, 1.f, -0.f});
|
|
TEST_HALF_MATH_FUNCTION(expm1, KE::bhalf_t)
|
|
({-98.f, -7.6f, -.54f, 3.2f, 1.f, -0.f});
|
|
TEST_MATH_FUNCTION(expm1)({-98.f, -7.6f, -.54f, 3.2f, 1.f, -0.f});
|
|
TEST_MATH_FUNCTION(expm1)({-98., -7.6, -.54, 3.2, 1., -0.});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(expm1)({-98.l, -7.6l, -.54l, 3.2l, 1.l, -0.l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(log)({1, 23, 456, 7890});
|
|
TEST_MATH_FUNCTION(log)({1l, 23l, 456l, 7890l});
|
|
TEST_MATH_FUNCTION(log)({1ll, 23ll, 456ll, 7890ll});
|
|
TEST_MATH_FUNCTION(log)({1u, 23u, 456u, 7890u});
|
|
TEST_MATH_FUNCTION(log)({1ul, 23ul, 456ul, 7890ul});
|
|
TEST_MATH_FUNCTION(log)({1ull, 23ull, 456ull, 7890ull});
|
|
TEST_HALF_MATH_FUNCTION(log, KE::half_t)({1234.f, 567.f, 89.f, .1f});
|
|
TEST_HALF_MATH_FUNCTION(log, KE::bhalf_t)({1234.f, 567.f, 89.f, .1f});
|
|
TEST_MATH_FUNCTION(log)({1234.f, 567.f, 89.f, .1f});
|
|
TEST_MATH_FUNCTION(log)({1234., 567., 89., .02});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(log)({1234.l, 567.l, 89.l, .003l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(log10)({1, 23, 456, 7890});
|
|
TEST_MATH_FUNCTION(log10)({1l, 23l, 456l, 7890l});
|
|
TEST_MATH_FUNCTION(log10)({1ll, 23ll, 456ll, 7890ll});
|
|
TEST_MATH_FUNCTION(log10)({1u, 23u, 456u, 7890u});
|
|
TEST_MATH_FUNCTION(log10)({1ul, 23ul, 456ul, 7890ul});
|
|
TEST_MATH_FUNCTION(log10)({1ull, 23ull, 456ull, 7890ull});
|
|
TEST_HALF_MATH_FUNCTION(log10, KE::half_t)({1234.f, 567.f, 89.f, .1f});
|
|
TEST_HALF_MATH_FUNCTION(log10, KE::bhalf_t)({1234.f, 567.f, 89.f, .1f});
|
|
TEST_MATH_FUNCTION(log10)({1234.f, 567.f, 89.f, .1f});
|
|
TEST_MATH_FUNCTION(log10)({1234., 567., 89., .02});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(log10)({1234.l, 567.l, 89.l, .003l});
|
|
#endif
|
|
|
|
// FIXME_OPENMPTARGET FIXME_AMD
|
|
#if defined(KOKKOS_ENABLE_OPENMPTARGET) && \
|
|
(defined(KOKKOS_ARCH_AMD_GFX906) || defined(KOKKOS_ARCH_AMD_GFX908) || \
|
|
defined(KOKKOS_ARCH_AMD_GFX90A) || defined(KOKKOS_ARCH_AMD_GFX942))
|
|
|
|
TEST_MATH_FUNCTION(log2)({1, 23, 456, 7890});
|
|
#endif
|
|
TEST_MATH_FUNCTION(log2)({1l, 23l, 456l, 7890l});
|
|
TEST_MATH_FUNCTION(log2)({1ll, 23ll, 456ll, 7890ll});
|
|
TEST_MATH_FUNCTION(log2)({1u, 23u, 456u, 7890u});
|
|
TEST_MATH_FUNCTION(log2)({1ul, 23ul, 456ul, 7890ul});
|
|
TEST_MATH_FUNCTION(log2)({1ull, 23ull, 456ull, 7890ull});
|
|
TEST_HALF_MATH_FUNCTION(log2, KE::half_t)({1234.f, 567.f, 89.f, .1f});
|
|
TEST_HALF_MATH_FUNCTION(log2, KE::bhalf_t)({1234.f, 567.f, 89.f, .1f});
|
|
TEST_MATH_FUNCTION(log2)({1234.f, 567.f, 89.f, .1f});
|
|
TEST_MATH_FUNCTION(log2)({1234., 567., 89., .02});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(log2)({1234.l, 567.l, 89.l, .003l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(log1p)({1, 23, 456, 7890, 0});
|
|
TEST_MATH_FUNCTION(log1p)({1l, 23l, 456l, 7890l, 0l});
|
|
TEST_MATH_FUNCTION(log1p)({1ll, 23ll, 456ll, 7890ll, 0ll});
|
|
TEST_MATH_FUNCTION(log1p)({1u, 23u, 456u, 7890u, 0u});
|
|
TEST_MATH_FUNCTION(log1p)({1ul, 23ul, 456ul, 7890ul, 0ul});
|
|
TEST_MATH_FUNCTION(log1p)({1ull, 23ull, 456ull, 7890ull, 0ull});
|
|
TEST_HALF_MATH_FUNCTION(log1p, KE::half_t)({1234.f, 567.f, 89.f, -.9f});
|
|
TEST_HALF_MATH_FUNCTION(log1p, KE::bhalf_t)({1234.f, 567.f, 89.f, -.9f});
|
|
TEST_MATH_FUNCTION(log1p)({1234.f, 567.f, 89.f, -.9f});
|
|
TEST_MATH_FUNCTION(log1p)({1234., 567., 89., -.08});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(log1p)({1234.l, 567.l, 89.l, -.007l});
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_1
|
|
TEST(TEST_CATEGORY, mathematical_functions_hyperbolic_functions) {
|
|
TEST_MATH_FUNCTION(sinh)({-3, -2, -1, 0, 1});
|
|
TEST_MATH_FUNCTION(sinh)({-3l, -2l, -1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(sinh)({-3ll, -2ll, -1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(sinh)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(sinh)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(sinh)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(sinh, KE::half_t)({.1f, -2.f, 3.f});
|
|
TEST_HALF_MATH_FUNCTION(sinh, KE::bhalf_t)({.1f, -2.f, 3.f});
|
|
TEST_MATH_FUNCTION(sinh)({.1f, -2.f, 3.f});
|
|
TEST_MATH_FUNCTION(sinh)({-4., .5, -.6});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(sinh)({.7l, .8l, .9l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(cosh)({-3, -2, -1, 0, 1});
|
|
TEST_MATH_FUNCTION(cosh)({-3l, -2l, -1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(cosh)({-3ll, -2ll, -1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(cosh)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(cosh)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(cosh)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(cosh, KE::half_t)({.1f, -2.f, 3.f});
|
|
TEST_HALF_MATH_FUNCTION(cosh, KE::bhalf_t)({.1f, -2.f, 3.f});
|
|
TEST_MATH_FUNCTION(cosh)({.1f, -2.f, 3.f});
|
|
TEST_MATH_FUNCTION(cosh)({-4., .5, -.6});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(cosh)({.7l, .8l, .9l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(tanh)({-3, -2, -1, 0, 1});
|
|
TEST_MATH_FUNCTION(tanh)({-3l, -2l, -1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(tanh)({-3ll, -2ll, -1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(tanh)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(tanh)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(tanh)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(tanh, KE::half_t)({.1f, -2.f, 3.f});
|
|
TEST_HALF_MATH_FUNCTION(tanh, KE::bhalf_t)({.1f, -2.f, 3.f});
|
|
TEST_MATH_FUNCTION(tanh)({.1f, -2.f, 3.f});
|
|
TEST_MATH_FUNCTION(tanh)({-4., .5, -.6});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(tanh)({.7l, .8l, .9l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(asinh)({-3, -2, -1, 0, 1});
|
|
TEST_MATH_FUNCTION(asinh)({-3l, -2l, -1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(asinh)({-3ll, -2ll, -1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(asinh)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(asinh)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(asinh)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(asinh, KE::half_t)({.1f, -2.f, 3.f});
|
|
TEST_HALF_MATH_FUNCTION(asinh, KE::bhalf_t)({.1f, -2.f, 3.f});
|
|
TEST_MATH_FUNCTION(asinh)({.1f, -2.f, 3.f});
|
|
TEST_MATH_FUNCTION(asinh)({-4., .5, -.6});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(asinh)({.7l, .8l, .9l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(acosh)({1, 2, 3, 4, 5, 6});
|
|
TEST_MATH_FUNCTION(acosh)({1l, 2l, 3l, 4l, 5l, 6l});
|
|
TEST_MATH_FUNCTION(acosh)({1ll, 2ll, 3ll, 4ll, 5ll, 6ll});
|
|
TEST_MATH_FUNCTION(acosh)({1u, 2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(acosh)({1ul, 2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(acosh)({1ull, 2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(acosh, KE::half_t)({1.2f, 34.f, 56.f, 789.f});
|
|
TEST_HALF_MATH_FUNCTION(acosh, KE::bhalf_t)({1.2f, 34.f, 56.f, 789.f});
|
|
TEST_MATH_FUNCTION(acosh)({1.2f, 34.f, 56.f, 789.f});
|
|
TEST_MATH_FUNCTION(acosh)({1.2, 34., 56., 789.});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(acosh)({1.2l, 34.l, 56.l, 789.l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(atanh)({0});
|
|
TEST_MATH_FUNCTION(atanh)({0l});
|
|
TEST_MATH_FUNCTION(atanh)({0ll});
|
|
TEST_MATH_FUNCTION(atanh)({0u});
|
|
TEST_MATH_FUNCTION(atanh)({0ul});
|
|
TEST_MATH_FUNCTION(atanh)({0ull});
|
|
TEST_HALF_MATH_FUNCTION(atanh, KE::half_t)
|
|
({-.97f, .86f, -.53f, .42f, -.1f, 0.f});
|
|
TEST_HALF_MATH_FUNCTION(atanh, KE::bhalf_t)
|
|
({-.97f, .86f, -.53f, .42f, -.1f, 0.f});
|
|
TEST_MATH_FUNCTION(atanh)({-.97f, .86f, -.53f, .42f, -.1f, 0.f});
|
|
TEST_MATH_FUNCTION(atanh)({-.97, .86, -.53, .42, -.1, 0.});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(atanh)({-.97l, .86l, -.53l, .42l, -.1l, 0.l});
|
|
#endif
|
|
}
|
|
|
|
TEST(TEST_CATEGORY, mathematical_functions_non_standard) {
|
|
TEST_MATH_FUNCTION(rsqrt)({1, 2, 3, 5, 7, 11});
|
|
TEST_MATH_FUNCTION(rsqrt)({1l, 2l, 3l, 5l, 7l, 11l});
|
|
TEST_MATH_FUNCTION(rsqrt)({1ll, 2ll, 3ll, 5ll, 7ll, 11ll});
|
|
TEST_MATH_FUNCTION(rsqrt)({1u, 2u, 3u, 5u, 7u});
|
|
TEST_MATH_FUNCTION(rsqrt)({1ul, 2ul, 3ul, 5ul, 7ul});
|
|
TEST_MATH_FUNCTION(rsqrt)({1ull, 2ull, 3ull, 5ull, 7ull});
|
|
TEST_MATH_FUNCTION(rsqrt)({10.f, 20.f, 30.f, 40.f});
|
|
TEST_MATH_FUNCTION(rsqrt)({11.1, 22.2, 33.3, 44.4});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(rsqrt)({10.l, 20.l, 30.l, 40.l});
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifndef KOKKOS_MATHEMATICAL_FUNCTIONS_SKIP_2
|
|
|
|
TEST(TEST_CATEGORY, mathematical_functions_error_and_gamma_functions) {
|
|
TEST_MATH_FUNCTION(erf)({-3, -2, -1, 0, 1});
|
|
TEST_MATH_FUNCTION(erf)({-3l, -2l, -1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(erf)({-3ll, -2ll, -1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(erf)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(erf)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(erf)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(erf, KE::half_t)({.1f, -2.f, 3.f});
|
|
TEST_HALF_MATH_FUNCTION(erf, KE::bhalf_t)({.1f, -2.f, 3.f});
|
|
TEST_MATH_FUNCTION(erf)({.1f, -2.f, 3.f});
|
|
TEST_MATH_FUNCTION(erf)({-4., .5, -.6});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(erf)({.7l, .8l, .9l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(erfc)({-3, -2, -1, 0, 1});
|
|
TEST_MATH_FUNCTION(erfc)({-3l, -2l, -1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(erfc)({-3ll, -2ll, -1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(erfc)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(erfc)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(erfc)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(erfc, KE::half_t)({.1f, -2.f, 3.f});
|
|
TEST_HALF_MATH_FUNCTION(erfc, KE::bhalf_t)({.1f, -2.f, 3.f});
|
|
TEST_MATH_FUNCTION(erfc)({.1f, -2.f, 3.f});
|
|
TEST_MATH_FUNCTION(erfc)({-4., .5, -.6});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(erfc)({.7l, .8l, .9l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(tgamma)({1, 2, 3, 4, 56, 78});
|
|
TEST_MATH_FUNCTION(tgamma)({1l, 2l, 3l, 4l, 56l, 78l});
|
|
TEST_MATH_FUNCTION(tgamma)({1ll, 2ll, 3ll, 4ll, 56ll, 78ll});
|
|
TEST_MATH_FUNCTION(tgamma)({1u, 2u, 3u, 4u, 56u, 78u});
|
|
TEST_MATH_FUNCTION(tgamma)({1ul, 2ul, 3ul, 4ul, 56ul, 78ul});
|
|
TEST_MATH_FUNCTION(tgamma)({1ull, 2ull, 3ull, 4ull, 56ull, 78ull});
|
|
TEST_HALF_MATH_FUNCTION(tgamma, KE::half_t)({.1f, -2.2f, 3.f});
|
|
TEST_HALF_MATH_FUNCTION(tgamma, KE::bhalf_t)({.1f, -2.2f, 3.f});
|
|
TEST_MATH_FUNCTION(tgamma)({.1f, -2.2f, 3.f});
|
|
TEST_MATH_FUNCTION(tgamma)({-4.4, .5, -.6});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(tgamma)({.7l, .8l, .9l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(lgamma)({1, 2, 3, 4, 56, 78});
|
|
TEST_MATH_FUNCTION(lgamma)({1l, 2l, 3l, 4l, 56l, 78l});
|
|
TEST_MATH_FUNCTION(lgamma)({1ll, 2ll, 3ll, 4ll, 56ll, 78ll});
|
|
TEST_MATH_FUNCTION(lgamma)({1u, 2u, 3u, 4u, 56u, 78u});
|
|
TEST_MATH_FUNCTION(lgamma)({1ul, 2ul, 3ul, 4ul, 56ul, 78ul});
|
|
TEST_MATH_FUNCTION(lgamma)({1ull, 2ull, 3ull, 4ull, 56ull, 78ull});
|
|
TEST_HALF_MATH_FUNCTION(lgamma, KE::half_t)({.1f, -2.2f, 3.f});
|
|
TEST_HALF_MATH_FUNCTION(lgamma, KE::bhalf_t)({.1f, -2.2f, 3.f});
|
|
TEST_MATH_FUNCTION(lgamma)({.1f, -2.2f, 3.f});
|
|
TEST_MATH_FUNCTION(lgamma)({-4.4, .5, -.6});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(lgamma)({.7l, .8l, .9l});
|
|
#endif
|
|
}
|
|
|
|
TEST(TEST_CATEGORY,
|
|
mathematical_functions_nearest_interger_floating_point_operations) {
|
|
TEST_MATH_FUNCTION(ceil)({-3, -2, -1, 0, 1});
|
|
TEST_MATH_FUNCTION(ceil)({-3l, -2l, -1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(ceil)({-3ll, -2ll, -1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(ceil)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(ceil)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(ceil)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(ceil, KE::half_t)({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f});
|
|
TEST_HALF_MATH_FUNCTION(ceil, KE::bhalf_t)({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f});
|
|
TEST_MATH_FUNCTION(ceil)({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f});
|
|
TEST_MATH_FUNCTION(ceil)({-6.6, 7.7, -8.8, 9.9});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(ceil)({12.3l, 4.56l, 789.l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(floor)({-3, -2, -1, 0, 1});
|
|
TEST_MATH_FUNCTION(floor)({-3l, -2l, -1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(floor)({-3ll, -2ll, -1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(floor)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(floor)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(floor)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(floor, KE::half_t)({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f});
|
|
TEST_HALF_MATH_FUNCTION(floor, KE::bhalf_t)
|
|
({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f});
|
|
TEST_MATH_FUNCTION(floor)({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f});
|
|
TEST_MATH_FUNCTION(floor)({-6.6, 7.7, -8.8, 9.9});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(floor)({12.3l, 4.56l, 789.l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(trunc)({-3, -2, -1, 0, 1});
|
|
TEST_MATH_FUNCTION(trunc)({-3l, -2l, -1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(trunc)({-3ll, -2ll, -1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(trunc)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(trunc)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(trunc)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(trunc, KE::half_t)({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f});
|
|
TEST_HALF_MATH_FUNCTION(trunc, KE::bhalf_t)
|
|
({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f});
|
|
TEST_MATH_FUNCTION(trunc)({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f});
|
|
TEST_MATH_FUNCTION(trunc)({-6.6, 7.7, -8.8, 9.9});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(trunc)({12.3l, 4.56l, 789.l});
|
|
#endif
|
|
|
|
TEST_MATH_FUNCTION(round)({-3, -2, -1, 0, 1});
|
|
TEST_MATH_FUNCTION(round)({-3l, -2l, -1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(round)({-3ll, -2ll, -1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(round)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(round)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(round)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(round, KE::half_t)
|
|
({2.3f, 2.5f, 2.7f, -2.3f, -2.5f, -2.7f, -0.0f});
|
|
TEST_HALF_MATH_FUNCTION(round, KE::bhalf_t)
|
|
({2.3f, 2.5f, 2.7f, -2.3f, -2.5f, -2.7f, -0.0f});
|
|
TEST_MATH_FUNCTION(round)({2.3f, 2.5f, 2.7f, -2.3f, -2.5f, -2.7f, -0.0f});
|
|
TEST_MATH_FUNCTION(round)({2.3, 2.5, 2.7, -2.3, -2.5, -2.7, -0.0});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(round)({2.3l, 2.5l, 2.7l, -2.3l, -2.5l, -2.7l, -0.0l});
|
|
#endif
|
|
|
|
#ifndef KOKKOS_ENABLE_SYCL
|
|
TEST_MATH_FUNCTION(nearbyint)({-3, -2, -1, 0, 1});
|
|
TEST_MATH_FUNCTION(nearbyint)({-3l, -2l, -1l, 0l, 1l});
|
|
TEST_MATH_FUNCTION(nearbyint)({-3ll, -2ll, -1ll, 0ll, 1ll});
|
|
TEST_MATH_FUNCTION(nearbyint)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(nearbyint)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(nearbyint)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(nearbyint, KE::half_t)
|
|
({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f});
|
|
TEST_HALF_MATH_FUNCTION(nearbyint, KE::bhalf_t)
|
|
({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f});
|
|
TEST_MATH_FUNCTION(nearbyint)({-1.1f, 2.2f, -3.3f, 4.4f, -5.5f});
|
|
TEST_MATH_FUNCTION(nearbyint)({-6.6, 7.7, -8.8, 9.9});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(nearbyint)({12.3l, 4.56l, 789.l});
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
TEST(TEST_CATEGORY,
|
|
mathematical_functions_floating_point_manipulation_functions) {
|
|
TEST_MATH_FUNCTION(logb)({2, 3, 4, 56, 789});
|
|
TEST_MATH_FUNCTION(logb)({2l, 3l, 4l, 56l, 789l});
|
|
TEST_MATH_FUNCTION(logb)({2ll, 3ll, 4ll, 56ll, 789ll});
|
|
TEST_MATH_FUNCTION(logb)({2u, 3u, 4u, 5u, 6u});
|
|
TEST_MATH_FUNCTION(logb)({2ul, 3ul, 4ul, 5ul, 6ul});
|
|
TEST_MATH_FUNCTION(logb)({2ull, 3ull, 4ull, 5ull, 6ull});
|
|
TEST_HALF_MATH_FUNCTION(logb, KE::half_t)({123.45f, 6789.0f});
|
|
TEST_HALF_MATH_FUNCTION(logb, KE::bhalf_t)({123.45f, 6789.0f});
|
|
TEST_MATH_FUNCTION(logb)({123.45f, 6789.0f});
|
|
TEST_MATH_FUNCTION(logb)({123.45, 6789.0});
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
TEST_MATH_FUNCTION(logb)({123.45l, 6789.0l});
|
|
#endif
|
|
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_nextafter>(
|
|
0, static_cast<KE::half_t>(1.f));
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_nextafter>(
|
|
1, static_cast<KE::half_t>(2.f));
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_nextafter>(
|
|
0, static_cast<KE::bhalf_t>(1.f));
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_nextafter>(
|
|
1, static_cast<KE::bhalf_t>(2.f));
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_nextafter>(0, 1.f);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_nextafter>(1, 2.f);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_nextafter>(0.1, 0);
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_nextafter>(1, 2.l);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_nextafter>(1.l, 2.l);
|
|
#endif
|
|
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(
|
|
0, static_cast<KE::half_t>(1.f));
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(
|
|
1, static_cast<KE::half_t>(2.f));
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(
|
|
0, static_cast<KE::bhalf_t>(1.f));
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(
|
|
1, static_cast<KE::bhalf_t>(2.f));
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(0, 1.f);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(1, 2.f);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(0.1, 0);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(1.f, +2.f);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(1.f, -2.f);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(1., +2.);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(1., -2.);
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(1, +2.l);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(1.l, +2);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(1.l, +2.l);
|
|
do_test_math_binary_function<TEST_EXECSPACE, kk_copysign>(1.l, -2.l);
|
|
#endif
|
|
}
|
|
|
|
template <class Space>
|
|
struct TestAbsoluteValueFunction {
|
|
TestAbsoluteValueFunction() { run(); }
|
|
void run() const {
|
|
int errors = 0;
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<Space>(0, 1), *this, errors);
|
|
ASSERT_EQ(errors, 0);
|
|
}
|
|
KOKKOS_FUNCTION void operator()(int, int& e) const {
|
|
using Kokkos::abs;
|
|
if (abs(1) != 1 || abs(-1) != 1) {
|
|
++e;
|
|
Kokkos::printf("failed abs(int)\n");
|
|
}
|
|
if (abs(2l) != 2l || abs(-2l) != 2l) {
|
|
++e;
|
|
Kokkos::printf("failed abs(long int)\n");
|
|
}
|
|
if (abs(3ll) != 3ll || abs(-3ll) != 3ll) {
|
|
++e;
|
|
Kokkos::printf("failed abs(long long int)\n");
|
|
}
|
|
if (abs(4.f) != 4.f || abs(-4.f) != 4.f) {
|
|
++e;
|
|
Kokkos::printf("failed abs(float)\n");
|
|
}
|
|
if (abs(static_cast<KE::half_t>(4.f)) != static_cast<KE::half_t>(4.f) ||
|
|
abs(static_cast<KE::half_t>(-4.f)) != static_cast<KE::half_t>(4.f)) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed abs(KE::half_t)\n");
|
|
}
|
|
if (abs(static_cast<KE::bhalf_t>(4.f)) != static_cast<KE::bhalf_t>(4.f) ||
|
|
abs(static_cast<KE::bhalf_t>(-4.f)) != static_cast<KE::bhalf_t>(4.f)) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed abs(KE::bhalf_t)\n");
|
|
}
|
|
if (abs(5.) != 5. || abs(-5.) != 5.) {
|
|
++e;
|
|
Kokkos::printf("failed abs(double)\n");
|
|
}
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
if (abs(6.l) != 6.l || abs(-6.l) != 6.l) {
|
|
++e;
|
|
Kokkos::printf("failed abs(long double)\n");
|
|
}
|
|
#endif
|
|
// special values
|
|
using Kokkos::isinf;
|
|
using Kokkos::isnan;
|
|
if (abs(-0.) != 0. || !isinf(abs(-INFINITY)) || !isnan(abs(-NAN))) {
|
|
++e;
|
|
Kokkos::printf("failed abs(floating_point) special values\n");
|
|
}
|
|
|
|
static_assert(std::is_same<decltype(abs(1)), int>::value, "");
|
|
static_assert(std::is_same<decltype(abs(2l)), long>::value, "");
|
|
static_assert(std::is_same<decltype(abs(3ll)), long long>::value, "");
|
|
static_assert(std::is_same<decltype(abs(static_cast<KE::half_t>(4.f))),
|
|
KE::half_t>::value,
|
|
"");
|
|
static_assert(std::is_same<decltype(abs(static_cast<KE::bhalf_t>(4.f))),
|
|
KE::bhalf_t>::value,
|
|
"");
|
|
static_assert(std::is_same<decltype(abs(4.f)), float>::value, "");
|
|
static_assert(std::is_same<decltype(abs(5.)), double>::value, "");
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
static_assert(std::is_same<decltype(abs(6.l)), long double>::value, "");
|
|
#endif
|
|
}
|
|
};
|
|
|
|
TEST(TEST_CATEGORY, mathematical_functions_absolute_value) {
|
|
TestAbsoluteValueFunction<TEST_EXECSPACE>();
|
|
}
|
|
|
|
template <class Space>
|
|
struct TestFloatingPointAbsoluteValueFunction {
|
|
TestFloatingPointAbsoluteValueFunction() { run(); }
|
|
void run() const {
|
|
int errors = 0;
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<Space>(0, 1), *this, errors);
|
|
ASSERT_EQ(errors, 0);
|
|
}
|
|
KOKKOS_FUNCTION void operator()(int, int& e) const {
|
|
using Kokkos::fabs;
|
|
if (fabs(4.f) != 4.f || fabs(-4.f) != 4.f) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed fabs(float)\n");
|
|
}
|
|
if (fabs(static_cast<KE::half_t>(4.f)) != static_cast<KE::half_t>(4.f) ||
|
|
fabs(static_cast<KE::half_t>(-4.f)) != static_cast<KE::half_t>(4.f)) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed fabs(KE::half_t)\n");
|
|
}
|
|
if (fabs(static_cast<KE::bhalf_t>(4.f)) != static_cast<KE::bhalf_t>(4.f) ||
|
|
fabs(static_cast<KE::bhalf_t>(-4.f)) != static_cast<KE::bhalf_t>(4.f)) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed fabs(KE::bhalf_t)\n");
|
|
}
|
|
if (fabs(5.) != 5. || fabs(-5.) != 5.) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed fabs(double)\n");
|
|
}
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
if (fabs(6.l) != 6.l || fabs(-6.l) != 6.l) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed fabs(long double)\n");
|
|
}
|
|
#endif
|
|
// special values
|
|
using Kokkos::isinf;
|
|
using Kokkos::isnan;
|
|
if (fabs(-0.) != 0. || !isinf(fabs(-INFINITY)) || !isnan(fabs(-NAN))) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF(
|
|
"failed fabs(floating_point) special values\n");
|
|
}
|
|
|
|
static_assert(std::is_same<decltype(fabs(static_cast<KE::half_t>(4.f))),
|
|
KE::half_t>::value);
|
|
static_assert(std::is_same<decltype(fabs(static_cast<KE::bhalf_t>(4.f))),
|
|
KE::bhalf_t>::value);
|
|
static_assert(std::is_same<decltype(fabs(4.f)), float>::value);
|
|
static_assert(std::is_same<decltype(fabs(5.)), double>::value);
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
static_assert(std::is_same<decltype(fabs(6.l)), long double>::value);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
TEST(TEST_CATEGORY, mathematical_functions_floating_point_absolute_value) {
|
|
TestFloatingPointAbsoluteValueFunction<TEST_EXECSPACE>();
|
|
}
|
|
|
|
template <class Space>
|
|
struct TestFloatingPointRemainderFunction : FloatingPointComparison {
|
|
TestFloatingPointRemainderFunction() { run(); }
|
|
void run() const {
|
|
int errors = 0;
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<Space>(0, 1), *this, errors);
|
|
ASSERT_EQ(errors, 0);
|
|
}
|
|
KOKKOS_FUNCTION void operator()(int, int& e) const {
|
|
using Kokkos::fmod;
|
|
if (!compare(fmod(6.2f, 4.f), 2.2f, 1) &&
|
|
!compare(fmod(-6.2f, 4.f), -2.2f, 1)) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed fmod(float)\n");
|
|
}
|
|
if (!compare(
|
|
fmod(static_cast<KE::half_t>(6.2f), static_cast<KE::half_t>(4.f)),
|
|
static_cast<KE::half_t>(2.2f), 1) &&
|
|
!compare(
|
|
fmod(static_cast<KE::half_t>(-6.2f), static_cast<KE::half_t>(4.f)),
|
|
-static_cast<KE::half_t>(2.2f), 1)) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed fmod(KE::half_t)\n");
|
|
}
|
|
if (!compare(
|
|
fmod(static_cast<KE::bhalf_t>(6.2f), static_cast<KE::bhalf_t>(4.f)),
|
|
static_cast<KE::bhalf_t>(2.2f), 1) &&
|
|
!compare(fmod(static_cast<KE::bhalf_t>(-6.2f),
|
|
static_cast<KE::bhalf_t>(4.f)),
|
|
-static_cast<KE::bhalf_t>(2.2f), 1)) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed fmod(KE::bhalf_t)\n");
|
|
}
|
|
if (!compare(fmod(6.2, 4.), 2.2, 1) && !compare(fmod(-6.2, 4.), -2.2, 1)) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed fmod(double)\n");
|
|
}
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
if (!compare(fmod(6.2l, 4.l), 2.2l, 1) &&
|
|
!compare(fmod(-6.2l, 4.l), -2.2l, 1)) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed fmod(long double)\n");
|
|
}
|
|
#endif
|
|
// special values
|
|
using Kokkos::isinf;
|
|
using Kokkos::isnan;
|
|
if (!isinf(fmod(-KE::infinity<float>::value, 1.f)) &&
|
|
!isnan(fmod(-KE::quiet_NaN<float>::value, 1.f))) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF(
|
|
"failed fmod(floating_point) special values\n");
|
|
}
|
|
|
|
static_assert(std::is_same<decltype(fmod(static_cast<KE::half_t>(4.f),
|
|
static_cast<KE::half_t>(4.f))),
|
|
KE::half_t>::value,
|
|
"");
|
|
static_assert(std::is_same<decltype(fmod(static_cast<KE::bhalf_t>(4.f),
|
|
static_cast<KE::bhalf_t>(4.f))),
|
|
KE::bhalf_t>::value,
|
|
"");
|
|
static_assert(std::is_same<decltype(fmod(4.f, 4.f)), float>::value, "");
|
|
static_assert(std::is_same<decltype(fmod(5., 5.)), double>::value, "");
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
static_assert(std::is_same<decltype(fmod(6.l, 6.l)), long double>::value,
|
|
"");
|
|
#endif
|
|
}
|
|
};
|
|
|
|
TEST(TEST_CATEGORY, mathematical_functions_remainder_function) {
|
|
TestFloatingPointRemainderFunction<TEST_EXECSPACE>();
|
|
}
|
|
|
|
#if 0
|
|
// TODO: Adjust expected values, see https://github.com/kokkos/kokkos/issues/6275
|
|
template <class Space>
|
|
struct TestIEEEFloatingPointRemainderFunction : FloatingPointComparison {
|
|
TestIEEEFloatingPointRemainderFunction() { run(); }
|
|
void run() const {
|
|
int errors = 0;
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<Space>(0, 1), *this, errors);
|
|
ASSERT_EQ(errors, 0);
|
|
}
|
|
KOKKOS_FUNCTION void operator()(int, int& e) const {
|
|
using Kokkos::remainder;
|
|
if (!compare(remainder(6.2f, 4.f), 2.2f, 2) &&
|
|
!compare(remainder(-6.2f, 4.f), 2.2f, 1)) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed remainder(float)\n");
|
|
}
|
|
if (!compare(remainder(static_cast<KE::half_t>(6.2f),
|
|
static_cast<KE::half_t>(4.f)),
|
|
static_cast<KE::half_t>(2.2f), 1) &&
|
|
!compare(remainder(static_cast<KE::half_t>(-6.2f),
|
|
static_cast<KE::half_t>(4.f)),
|
|
-static_cast<KE::half_t>(2.2f), 1)) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed remainder(KE::half_t)\n");
|
|
}
|
|
if (!compare(remainder(static_cast<KE::bhalf_t>(6.2f),
|
|
static_cast<KE::bhalf_t>(4.f)),
|
|
static_cast<KE::bhalf_t>(2.2f), 1) &&
|
|
!compare(remainder(static_cast<KE::bhalf_t>(-6.2f),
|
|
static_cast<KE::bhalf_t>(4.f)),
|
|
-static_cast<KE::bhalf_t>(2.2f), 1)) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed remainder(KE::bhalf_t)\n");
|
|
}
|
|
if (!compare(remainder(6.2, 4.), 2.2, 2) &&
|
|
!compare(remainder(-6.2, 4.), 2.2, 1)) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed remainder(double)\n");
|
|
}
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
if (!compare(remainder(6.2l, 4.l), 2.2l, 1) &&
|
|
!compare(remainder(-6.2l, 4.l), -2.2l, 1)) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed remainder(long double)\n");
|
|
}
|
|
#endif
|
|
// special values
|
|
using Kokkos::isinf;
|
|
using Kokkos::isnan;
|
|
if (!isinf(remainder(-KE::infinity<float>::value, 1.f)) &&
|
|
!isnan(remainder(-KE::quiet_NaN<float>::value, 1.f))) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF(
|
|
"failed remainder(floating_point) special values\n");
|
|
}
|
|
|
|
static_assert(
|
|
std::is_same<decltype(remainder(static_cast<KE::half_t>(4.f),
|
|
static_cast<KE::half_t>(4.f))),
|
|
KE::half_t>::value,
|
|
"");
|
|
static_assert(
|
|
std::is_same<decltype(remainder(static_cast<KE::bhalf_t>(4.f),
|
|
static_cast<KE::bhalf_t>(4.f))),
|
|
KE::bhalf_t>::value,
|
|
"");
|
|
static_assert(std::is_same<decltype(remainder(4.f, 4.f)), float>::value,
|
|
"");
|
|
static_assert(std::is_same<decltype(remainder(5., 5.)), double>::value, "");
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
static_assert(
|
|
std::is_same<decltype(remainder(6.l, 6.l)), long double>::value, "");
|
|
#endif
|
|
}
|
|
};
|
|
|
|
TEST(TEST_CATEGORY, mathematical_functions_ieee_remainder_function) {
|
|
TestIEEEFloatingPointRemainderFunction<TEST_EXECSPACE>();
|
|
}
|
|
#endif
|
|
|
|
// TODO: TestFpClassify, see https://github.com/kokkos/kokkos/issues/6279
|
|
|
|
template <class Space>
|
|
struct TestIsFinite {
|
|
TestIsFinite() { run(); }
|
|
void run() const {
|
|
int errors = 0;
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<Space>(0, 1), *this, errors);
|
|
ASSERT_EQ(errors, 0);
|
|
}
|
|
KOKKOS_FUNCTION void operator()(int, int& e) const {
|
|
using KE::infinity;
|
|
using KE::quiet_NaN;
|
|
using KE::signaling_NaN;
|
|
using Kokkos::isfinite;
|
|
if (!isfinite(1) || !isfinite(INT_MAX)) {
|
|
++e;
|
|
Kokkos::printf("failed isfinite(integral)\n");
|
|
}
|
|
if (!isfinite(2.f) || isfinite(quiet_NaN<float>::value) ||
|
|
isfinite(signaling_NaN<float>::value) ||
|
|
isfinite(infinity<float>::value)) {
|
|
++e;
|
|
Kokkos::printf("failed isfinite(float)\n");
|
|
}
|
|
if (!isfinite(static_cast<KE::half_t>(2.f))
|
|
#ifndef KOKKOS_COMPILER_NVHPC // FIXME_NVHPC 23.7
|
|
|| isfinite(quiet_NaN<KE::half_t>::value) ||
|
|
isfinite(signaling_NaN<KE::half_t>::value) ||
|
|
isfinite(infinity<KE::half_t>::value)
|
|
#endif
|
|
) {
|
|
++e;
|
|
Kokkos::printf("failed isfinite(KE::half_t)\n");
|
|
}
|
|
if (!isfinite(static_cast<KE::bhalf_t>(2.f))
|
|
#ifndef KOKKOS_COMPILER_NVHPC // FIXME_NVHPC 23.7
|
|
|| isfinite(quiet_NaN<KE::bhalf_t>::value) ||
|
|
isfinite(signaling_NaN<KE::bhalf_t>::value) ||
|
|
isfinite(infinity<KE::bhalf_t>::value)
|
|
#endif
|
|
) {
|
|
++e;
|
|
Kokkos::printf("failed isfinite(KE::bhalf_t)\n");
|
|
}
|
|
if (!isfinite(3.)
|
|
#ifndef KOKKOS_COMPILER_NVHPC // FIXME_NVHPC 23.7
|
|
|| isfinite(quiet_NaN<double>::value) ||
|
|
isfinite(signaling_NaN<double>::value) ||
|
|
isfinite(infinity<double>::value)
|
|
#endif
|
|
) {
|
|
++e;
|
|
Kokkos::printf("failed isfinite(double)\n");
|
|
}
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
if (!isfinite(4.l) || isfinite(quiet_NaN<long double>::value) ||
|
|
isfinite(signaling_NaN<long double>::value) ||
|
|
isfinite(infinity<long double>::value)) {
|
|
++e;
|
|
Kokkos::printf("failed isfinite(long double)\n");
|
|
}
|
|
#endif
|
|
// special values
|
|
if (isfinite(INFINITY) || isfinite(NAN)) {
|
|
++e;
|
|
Kokkos::printf("failed isfinite(floating_point) special values\n");
|
|
}
|
|
|
|
static_assert(std::is_same<decltype(isfinite(1)), bool>::value);
|
|
static_assert(std::is_same<decltype(isfinite(2.f)), bool>::value);
|
|
static_assert(std::is_same<decltype(isfinite(3.)), bool>::value);
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
static_assert(std::is_same<decltype(isfinite(4.l)), bool>::value);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
TEST(TEST_CATEGORY, mathematical_functions_isfinite) {
|
|
TestIsFinite<TEST_EXECSPACE>();
|
|
}
|
|
|
|
template <class Space>
|
|
struct TestIsInf {
|
|
TestIsInf() { run(); }
|
|
void run() const {
|
|
int errors = 0;
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<Space>(0, 1), *this, errors);
|
|
ASSERT_EQ(errors, 0);
|
|
}
|
|
KOKKOS_FUNCTION void operator()(int, int& e) const {
|
|
using KE::infinity;
|
|
using KE::quiet_NaN;
|
|
using KE::signaling_NaN;
|
|
using Kokkos::isinf;
|
|
if (isinf(1) || isinf(INT_MAX)) {
|
|
++e;
|
|
Kokkos::printf("failed isinf(integral)\n");
|
|
}
|
|
if (isinf(2.f) || isinf(quiet_NaN<float>::value) ||
|
|
isinf(signaling_NaN<float>::value) || !isinf(infinity<float>::value)) {
|
|
++e;
|
|
Kokkos::printf("failed isinf(float)\n");
|
|
}
|
|
if (isinf(static_cast<KE::half_t>(2.f))
|
|
#ifndef KOKKOS_COMPILER_NVHPC // FIXME_NVHPC 23.7
|
|
|| isinf(quiet_NaN<KE::half_t>::value) ||
|
|
isinf(signaling_NaN<KE::half_t>::value) ||
|
|
!isinf(infinity<KE::half_t>::value)
|
|
#endif
|
|
) {
|
|
++e;
|
|
Kokkos::printf("failed isinf(KE::half_t)\n");
|
|
}
|
|
if (isinf(static_cast<KE::bhalf_t>(2.f))
|
|
#ifndef KOKKOS_COMPILER_NVHPC // FIXME_NVHPC 23.7
|
|
|| isinf(quiet_NaN<KE::bhalf_t>::value) ||
|
|
isinf(signaling_NaN<KE::bhalf_t>::value) ||
|
|
!isinf(infinity<KE::bhalf_t>::value)
|
|
#endif
|
|
) {
|
|
++e;
|
|
Kokkos::printf("failed isinf(KE::bhalf_t)\n");
|
|
}
|
|
if (isinf(3.)
|
|
#ifndef KOKKOS_COMPILER_NVHPC // FIXME_NVHPC 23.7
|
|
|| isinf(quiet_NaN<double>::value) ||
|
|
isinf(signaling_NaN<double>::value) || !isinf(infinity<double>::value)
|
|
#endif
|
|
) {
|
|
++e;
|
|
Kokkos::printf("failed isinf(double)\n");
|
|
}
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
if (isinf(4.l) || isinf(quiet_NaN<long double>::value) ||
|
|
isinf(signaling_NaN<long double>::value) ||
|
|
!isinf(infinity<long double>::value)) {
|
|
++e;
|
|
Kokkos::printf("failed isinf(long double)\n");
|
|
}
|
|
#endif
|
|
// special values
|
|
if (!isinf(INFINITY) || isinf(NAN)) {
|
|
++e;
|
|
Kokkos::printf("failed isinf(floating_point) special values\n");
|
|
}
|
|
|
|
static_assert(std::is_same<decltype(isinf(1)), bool>::value);
|
|
static_assert(std::is_same<decltype(isinf(2.f)), bool>::value);
|
|
static_assert(std::is_same<decltype(isinf(3.)), bool>::value);
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
static_assert(std::is_same<decltype(isinf(4.l)), bool>::value);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
TEST(TEST_CATEGORY, mathematical_functions_isinf) {
|
|
TestIsInf<TEST_EXECSPACE>();
|
|
}
|
|
|
|
template <class Space>
|
|
struct TestIsNaN {
|
|
TestIsNaN() { run(); }
|
|
void run() const {
|
|
int errors = 0;
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<Space>(0, 1), *this, errors);
|
|
ASSERT_EQ(errors, 0);
|
|
}
|
|
KOKKOS_FUNCTION void operator()(int, int& e) const {
|
|
using KE::infinity;
|
|
using KE::quiet_NaN;
|
|
using KE::signaling_NaN;
|
|
using Kokkos::isnan;
|
|
if (isnan(1) || isnan(INT_MAX)) {
|
|
++e;
|
|
Kokkos::printf("failed isnan(integral)\n");
|
|
}
|
|
if (isnan(2.f) || !isnan(quiet_NaN<float>::value) ||
|
|
!isnan(signaling_NaN<float>::value) || isnan(infinity<float>::value)) {
|
|
++e;
|
|
Kokkos::printf("failed isnan(float)\n");
|
|
}
|
|
if (isnan(static_cast<KE::half_t>(2.f))
|
|
#ifndef KOKKOS_COMPILER_NVHPC // FIXME_NVHPC 23.7
|
|
|| !isnan(quiet_NaN<KE::half_t>::value) ||
|
|
!isnan(signaling_NaN<KE::half_t>::value) ||
|
|
isnan(infinity<KE::half_t>::value)
|
|
#endif
|
|
) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed isnan(KE::half_t)\n");
|
|
}
|
|
if (isnan(static_cast<KE::bhalf_t>(2.f))
|
|
#ifndef KOKKOS_COMPILER_NVHPC // FIXME_NVHPC 23.7
|
|
|| !isnan(quiet_NaN<KE::bhalf_t>::value) ||
|
|
!isnan(signaling_NaN<KE::bhalf_t>::value) ||
|
|
isnan(infinity<KE::bhalf_t>::value)
|
|
#endif
|
|
) {
|
|
++e;
|
|
KOKKOS_IMPL_DO_NOT_USE_PRINTF("failed isnan(KE::bhalf_t)\n");
|
|
}
|
|
if (isnan(3.)
|
|
#ifndef KOKKOS_COMPILER_NVHPC // FIXME_NVHPC 23.7
|
|
|| !isnan(quiet_NaN<double>::value) ||
|
|
!isnan(signaling_NaN<double>::value) || isnan(infinity<double>::value)
|
|
#endif
|
|
) {
|
|
++e;
|
|
Kokkos::printf("failed isnan(double)\n");
|
|
}
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
if (isnan(4.l) || !isnan(quiet_NaN<long double>::value) ||
|
|
!isnan(signaling_NaN<long double>::value) ||
|
|
isnan(infinity<long double>::value)) {
|
|
++e;
|
|
Kokkos::printf("failed isnan(long double)\n");
|
|
}
|
|
#endif
|
|
// special values
|
|
if (isnan(INFINITY) || !isnan(NAN)) {
|
|
++e;
|
|
Kokkos::printf("failed isnan(floating_point) special values\n");
|
|
}
|
|
|
|
static_assert(std::is_same<decltype(isnan(1)), bool>::value, "");
|
|
static_assert(std::is_same<decltype(isnan(2.f)), bool>::value, "");
|
|
static_assert(std::is_same<decltype(isnan(3.)), bool>::value, "");
|
|
#ifdef MATHEMATICAL_FUNCTIONS_HAVE_LONG_DOUBLE_OVERLOADS
|
|
static_assert(std::is_same<decltype(isnan(4.l)), bool>::value, "");
|
|
#endif
|
|
}
|
|
};
|
|
|
|
TEST(TEST_CATEGORY, mathematical_functions_isnan) {
|
|
TestIsNaN<TEST_EXECSPACE>();
|
|
}
|
|
|
|
// TODO: TestSignBit, see https://github.com/kokkos/kokkos/issues/6279
|
|
#endif
|