Files
lammps/doc/src/Python_install.rst

332 lines
15 KiB
ReStructuredText

Installation
************
The LAMMPS Python module enables calling the :ref:`LAMMPS C library API
<lammps_c_api>` from Python by dynamically loading functions in the
LAMMPS shared library through the Python `ctypes <ctypes_>`_
module. Because of the dynamic loading, it is required that LAMMPS is
compiled in :ref:`"shared" mode <exe>`.
.. versionchanged:: TBD
LAMMPS currently only supports Python version 3.6 or later.
Two components are necessary for Python to be able to invoke LAMMPS code:
* The LAMMPS Python Package (``lammps``) from the ``python`` folder
* The LAMMPS Shared Library (``liblammps.so``, ``liblammps.dylib`` or
``liblammps.dll``) from the folder where you compiled LAMMPS.
.. _ctypes: https://docs.python.org/3/library/ctypes.html
.. _python_install_guides:
Installing the LAMMPS Python Module and Shared Library
======================================================
Making LAMMPS usable within Python and vice versa requires putting the
LAMMPS Python package (``lammps``) into a location where the Python
interpreter can find it and installing the LAMMPS shared library into a
folder that the dynamic loader searches or inside of the installed
``lammps`` package folder. There are multiple ways to achieve this.
#. Install both components into a Python ``site-packages`` folder, either
system-wide or in the corresponding user-specific folder. This way no
additional environment variables need to be set, but the shared
library is otherwise not accessible.
#. Do an installation into a virtual environment.
#. Leave the files where they are in the source/development tree and
adjust some environment variables.
.. tabs::
.. tab:: Python package
Compile LAMMPS with either :doc:`CMake <Build_cmake>` or the
:doc:`traditional make <Build_make>` procedure in :ref:`shared
mode <exe>`. After compilation has finished, type (in the
compilation folder):
.. code-block:: bash
make install-python
This will try to build a so-called (binary) wheel file, a
compressed binary python package and then install it with the
python package manager 'pip'. Installation will be attempted into
a system-wide ``site-packages`` folder and if that fails into the
corresponding folder in the user's home directory. For a
system-wide installation you usually would have to gain superuser
privilege first, e.g. though ``sudo``
+------------------------+----------------------------------------------------------+-------------------------------------------------------------+
| File | Location | Notes |
+========================+==========================================================+=============================================================+
| LAMMPS Python package | * ``$HOME/.local/lib/pythonX.Y/site-packages/lammps`` | ``X.Y`` depends on the installed Python version |
+------------------------+----------------------------------------------------------+-------------------------------------------------------------+
| LAMMPS shared library | * ``$HOME/.local/lib/pythonX.Y/site-packages/lammps`` | ``X.Y`` depends on the installed Python version |
+------------------------+----------------------------------------------------------+-------------------------------------------------------------+
For a system-wide installation those folders would then become.
+------------------------+-------------------------------------------------+-------------------------------------------------------------+
| File | Location | Notes |
+========================+=================================================+=============================================================+
| LAMMPS Python package | * ``/usr/lib/pythonX.Y/site-packages/lammps`` | ``X.Y`` depends on the installed Python version |
+------------------------+-------------------------------------------------+-------------------------------------------------------------+
| LAMMPS shared library | * ``/usr/lib/pythonX.Y/site-packages/lammps`` | ``X.Y`` depends on the installed Python version |
+------------------------+-------------------------------------------------+-------------------------------------------------------------+
No environment variables need to be set for those, as those
folders are searched by default by Python or the LAMMPS Python
package.
.. versionchanged:: 24Mar2022
.. note::
If there is an existing installation of the LAMMPS python
module, ``make install-python`` will try to update it.
However, that will fail if the older version of the module
was installed by LAMMPS versions until 17Feb2022. Those
were using the distutils package, which does not create a
"manifest" that allows a clean uninstall. The ``make
install-python`` command will always produce a
lammps-<version>-<python>-<abi>-<os>-<arch>.whl file (the
'wheel'). And this file can be later installed directly with
``python -m pip install <wheel file>.whl`` without having to
type ``make install-python`` again and repeating the build
step, too.
For the traditional make process you can override the python
version to version x.y when calling ``make`` with
``PYTHON=pythonX.Y``. For a CMake based compilation this choice
has to be made during the CMake configuration step.
If the default settings of ``make install-python`` are not what you want,
you can invoke ``install.py`` from the python directory manually as
.. code-block:: bash
python install.py -p <python package> -l <shared library> -v <version.h file> [-n]
* The ``-p`` flag points to the ``lammps`` Python package folder to be installed,
* the ``-l`` flag points to the LAMMPS shared library file to be installed,
* the ``-v`` flag points to the LAMMPS version header file to extract the version date,
* and the optional ``-n`` instructs the script to only build a wheel file
but not attempt to install it.
.. tab:: Virtual environment
A virtual environment is a minimal Python installation inside of a
folder. It allows isolating and customizing a Python environment
that is mostly independent from a user or system installation.
For the core Python environment, it uses symbolic links to the
system installation and thus it can be set up quickly and will not
take up much disk space. This gives you the flexibility to
install (newer/different) versions of Python packages that would
potentially conflict with already installed system packages. It
also does not requite any superuser privileges. See `PEP 405:
Python Virtual Environments <https://peps.python.org/pep-0405/>`_ for more
information.
To create a virtual environment in the folder ``$HOME/myenv``,
use the `venv <https://docs.python.org/3/library/venv.html>`_ module as follows.
.. code-block:: bash
# create virtual environment in folder $HOME/myenv
python3 -m venv $HOME/myenv
To activate the virtual environment type:
.. code-block:: bash
source $HOME/myenv/bin/activate
This has to be done every time you log in or open a new terminal
window and after you turn off the virtual environment with the
``deactivate`` command.
When using CMake to build LAMMPS, you need to set
``CMAKE_INSTALL_PREFIX`` to the value of the ``$VIRTUAL_ENV``
environment variable during the configuration step. For the
traditional make procedure, no additional steps are needed.
After compiling LAMMPS you can do a "Python package only"
installation with ``make install-python`` and the LAMMPS Python
package and the shared library file are installed into the
following locations:
+------------------------+--------------------------------------------------------+-------------------------------------------------------------+
| File | Location | Notes |
+========================+========================================================+=============================================================+
| LAMMPS Python Module | * ``$VIRTUAL_ENV/lib/pythonX.Y/site-packages/lammps`` | ``X.Y`` depends on the installed Python version |
+------------------------+--------------------------------------------------------+-------------------------------------------------------------+
| LAMMPS shared library | * ``$VIRTUAL_ENV/lib/pythonX.Y/site-packages/lammps`` | ``X.Y`` depends on the installed Python version |
+------------------------+--------------------------------------------------------+-------------------------------------------------------------+
.. tab:: In place usage
You can also :doc:`compile LAMMPS <Build>` as usual in
:ref:`"shared" mode <exe>` leave the shared library and Python
package inside the source/compilation folders. Instead of
copying the files where they can be found, you need to set the environment
variables ``PYTHONPATH`` (for the Python package) and
``LD_LIBRARY_PATH`` (or ``DYLD_LIBRARY_PATH`` on macOS
For Bourne shells (bash, ksh and similar) the commands are:
.. code-block:: bash
export PYTHONPATH=${PYTHONPATH}:${HOME}/lammps/python
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${HOME}/lammps/src
For the C-shells like csh or tcsh the commands are:
.. code-block:: csh
setenv PYTHONPATH ${PYTHONPATH}:${HOME}/lammps/python
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${HOME}/lammps/src
On macOS you may also need to set ``DYLD_LIBRARY_PATH`` accordingly.
You can make those changes permanent by editing your ``$HOME/.bashrc``
or ``$HOME/.login`` files, respectively.
.. note::
The ``PYTHONPATH`` needs to point to the parent folder that contains the ``lammps`` package!
To verify if LAMMPS can be successfully started from Python, start the
Python interpreter, load the ``lammps`` Python module and create a
LAMMPS instance. This should not generate an error message and produce
output similar to the following:
.. code-block:: console
$ python
Python 3.8.5 (default, Sep 5 2020, 10:50:12)
[GCC 10.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import lammps
>>> lmp = lammps.lammps()
LAMMPS (18 Sep 2020)
using 1 OpenMP thread(s) per MPI task
>>>
.. note::
Unless you opted for "In place use", you will have to rerun the installation
any time you recompile LAMMPS to ensure the latest Python package and shared
library are installed and used.
.. note::
If you want Python to be able to load different versions of the
LAMMPS shared library with different settings, you will need to
manually copy the files under different names
(e.g. ``liblammps_mpi.so`` or ``liblammps_gpu.so``) into the
appropriate folder as indicated above. You can then select the
desired library through the *name* argument of the LAMMPS object
constructor (see :ref:`python_create_lammps`).
.. _python_install_mpi4py:
Extending Python to run in parallel
===================================
If you wish to run LAMMPS in parallel from Python, you need to extend
your Python with an interface to MPI. This also allows you to
make MPI calls directly from Python in your script, if you desire.
We have tested this with `MPI for Python <https://mpi4py.readthedocs.io/>`_
(aka mpi4py) and you will find installation instruction for it below.
Installation of mpi4py (version 4.0.1 as of Feb 2025) can be done as
follows:
- Via ``pip`` into a local user folder with:
.. code-block:: bash
python3 -m pip install --user mpi4py
- Via ``dnf`` into a system folder for RedHat/Fedora systems:
.. code-block:: bash
# for use with OpenMPI
sudo dnf install python3-mpi4py-openmpi
# for use with MPICH
sudo dnf install python3-mpi4py-mpich
- Via ``pip`` into a virtual environment (see above):
.. code-block:: console
$ source $HOME/myenv/activate
(myenv)$ python -m pip install mpi4py
- Via ``pip`` into a system folder (not recommended):
.. code-block:: bash
sudo python3 -m pip install mpi4py
For more detailed installation instructions and additional options,
please see the `mpi4py installation <https://mpi4py.readthedocs.io/en/stable/install.html>`_ page.
To use ``mpi4py`` and LAMMPS in parallel from Python, you **must** make
certain that **both** are using the **same** implementation and version
of MPI library. If you only have one MPI library installed on your
system this is not an issue, but it can be if you have multiple MPI
installations (e.g. on an HPC cluster to be selected through environment
modules). Your LAMMPS build is explicit about which MPI it is using,
since it is either detected during CMake configuration or in the
traditional make build system you specify the details in your low-level
``src/MAKE/Makefile.foo`` file. The installation process of ``mpi4py``
uses the ``mpicc`` command to find information about the MPI it uses to
build against. And it tries to load "libmpi.so" from the
``LD_LIBRARY_PATH``. This may or may not find the MPI library that
LAMMPS is using. If you have problems running both mpi4py and LAMMPS
together, this is an issue you may need to address, e.g. by loading the
module for different MPI installation so that mpi4py finds the right
one.
If you have successfully installed mpi4py, you should be able to run
Python and type
.. code-block:: python
from mpi4py import MPI
without error. You should also be able to run Python in parallel
on a simple test script
.. code-block:: bash
mpirun -np 4 python3 test.py
where ``test.py`` contains the lines
.. code-block:: python
from mpi4py import MPI
comm = MPI.COMM_WORLD
print("Proc %d out of %d procs" % (comm.Get_rank(),comm.Get_size()))
and see one line of output for each processor you run on. Please note
that the order of the lines is not deterministic
.. code-block:: console
$ mpirun -np 4 python3 test.py
Proc 0 out of 4 procs
Proc 1 out of 4 procs
Proc 2 out of 4 procs
Proc 3 out of 4 procs